Palicourea anianguana Sources Navigation menu"Palicourea anianguana"10.2305/IUCN.UK.2004.RLTS.T46074A11028327.enpalicourea-anianguana11057572899157441586996245-146074kew-145899urn:lsid:ipni.org:names:313557-250089031145899expanding ite

IUCN Red List vulnerable speciesFlora of EcuadorPalicoureaVulnerable plantsRubiaceae stubs


plantRubiaceaeendemicEcuador






















Palicourea anianguana

Conservation status




Vulnerable (IUCN 3.1)


Scientific classification
Kingdom:

Plantae

(unranked):

Angiosperms

(unranked):

Eudicots

(unranked):

Asterids

Order:

Gentianales

Family:

Rubiaceae

Genus:

Palicourea

Species:

P. anianguana


Binomial name

Palicourea anianguana
C.M.Taylor

Palicourea anianguana is a species of plant in the Rubiaceae family. It is endemic to Ecuador.



Sources



  • Jaramillo, T.; Cornejo, X. & Pitman, N. (2004). "Palicourea anianguana". The IUCN Red List of Threatened Species. IUCN. 2004: e.T46074A11028327. doi:10.2305/IUCN.UK.2004.RLTS.T46074A11028327.en. Retrieved 21 December 2017..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em






Popular posts from this blog

Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

Sum infinite sum for a complex variable not in the integers The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of the infinite product $prod_n = 1^infty fracz - alpha_nz - beta_n$Suppose $sum_k=-infty^inftya_kz^k$ and $sum_-infty^inftyb_kz^k$ converge to $1/sin(pi z)$. Find $b_k-a_k$.Laurent series of $ 1over (z - i) $Laurent series for $z^2 e^1/z$ at $z = infty$Write $sumlimits_n=0^infty e^-xn^3$ in the form $sumlimits_n=-infty^infty a_nx^n$Help needed on laurent series for a complex functionShow that $sum_-infty^infty (-1)^nexp(nz-frac12(n+frac12)^2omega)$ converges and is entireΑn entire function as an infinite sum of entire functionsClassify singularities in the extended complex planeFinding the laurent series around z = 0