Logistic function with a slope but no asymptotes?Has Arcsinh ever been considered as a neural network activation function?Effect of e when using the Sigmoid Function as an activation functionApproximation of Δoutput in context of Sigmoid functionModification of Sigmoid functionFinding the center of a logistic curveInput and Output range of the composition of Gaussian and Sigmoidal functions and it's entropyFinding the slope at different points in a sigmoid curveQuestion about Sigmoid Function in Logistic RegressionHas Arcsinh ever been considered as a neural network activation function?The link between logistic regression and logistic sigmoidHow can I even out the output of the sigmoid function?

Reverse dictionary where values are lists

Mathematica command that allows it to read my intentions

Can I run a new neutral wire to repair a broken circuit?

What is the most common color to indicate the input-field is disabled?

Size of subfigure fitting its content (tikzpicture)

Why didn't Boeing produce its own regional jet?

Plagiarism or not?

How seriously should I take size and weight limits of hand luggage?

Why is this clock signal connected to a capacitor to gnd?

What is a romance in Latin?

How did the Super Star Destroyer Executor get destroyed exactly?

What does the expression "A Mann!" means

Is it logically or scientifically possible to artificially send energy to the body?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Is it inappropriate for a student to attend their mentor's dissertation defense?

How can I determine if the org that I'm currently connected to is a scratch org?

Detention in 1997

What killed these X2 caps?

How to Recreate this in LaTeX? (Unsure What the Notation is Called)

How dangerous is XSS?

Avoiding direct proof while writing proof by induction

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

What exploit Are these user agents trying to use?

Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?



Logistic function with a slope but no asymptotes?


Has Arcsinh ever been considered as a neural network activation function?Effect of e when using the Sigmoid Function as an activation functionApproximation of Δoutput in context of Sigmoid functionModification of Sigmoid functionFinding the center of a logistic curveInput and Output range of the composition of Gaussian and Sigmoidal functions and it's entropyFinding the slope at different points in a sigmoid curveQuestion about Sigmoid Function in Logistic RegressionHas Arcsinh ever been considered as a neural network activation function?The link between logistic regression and logistic sigmoidHow can I even out the output of the sigmoid function?













8












$begingroup$


The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39
















8












$begingroup$


The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39














8












8








8





$begingroup$


The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?










share|cite|improve this question











$endgroup$




The logistic function has an output range 0 to 1, and asymptotic slope is zero on both sides.



What is an alternative to a logistic function that doesn't flatten out completely at its ends? Whose asymptotic slopes are approaching zero but not zero, and the range is infinite?







sigmoid-curve






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 21 at 6:33









Neil G

9,85013070




9,85013070










asked Mar 20 at 15:44









AksakalAksakal

39.1k452120




39.1k452120







  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39













  • 2




    $begingroup$
    The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
    $endgroup$
    – jld
    Mar 20 at 16:17










  • $begingroup$
    Basically I want a function that looks like sigmoid but has a slope
    $endgroup$
    – Aksakal
    Mar 20 at 16:24










  • $begingroup$
    Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
    $endgroup$
    – Aksakal
    Mar 20 at 16:31






  • 6




    $begingroup$
    $operatornamesign(x)log(1 + |x|)$?
    $endgroup$
    – steveo'america
    Mar 20 at 16:42







  • 4




    $begingroup$
    Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
    $endgroup$
    – usεr11852
    Mar 20 at 21:39








2




2




$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
Mar 20 at 16:17




$begingroup$
The title seems to disagree with how i read your question -- is this new function required to have asymptotes or not?
$endgroup$
– jld
Mar 20 at 16:17












$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
Mar 20 at 16:24




$begingroup$
Basically I want a function that looks like sigmoid but has a slope
$endgroup$
– Aksakal
Mar 20 at 16:24












$begingroup$
Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
$endgroup$
– Aksakal
Mar 20 at 16:31




$begingroup$
Right, a sigmoid like shape that doesn’t completely flatten, e.g. log function doesn’t completely flatten
$endgroup$
– Aksakal
Mar 20 at 16:31




6




6




$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
Mar 20 at 16:42





$begingroup$
$operatornamesign(x)log(1 + |x|)$?
$endgroup$
– steveo'america
Mar 20 at 16:42





4




4




$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
Mar 20 at 21:39





$begingroup$
Beginning of the decade called, it wants its neural network activation functions back. (Sorry bad joke, but realistically this is why people moved to ReLUs) (+1 though, relevant question)
$endgroup$
– usεr11852
Mar 20 at 21:39











3 Answers
3






active

oldest

votes


















10












$begingroup$

You could just add a term to a logistic function:



$$
f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
$$



The asymptotes will have slopes $d$.



Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



Sigmoid






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
    $endgroup$
    – user1717828
    Mar 21 at 1:30










  • $begingroup$
    this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
    $endgroup$
    – Aksakal
    Mar 22 at 10:46


















11












$begingroup$

Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
$$
textasinh(x) = logleft(x + sqrt1 + x^2right)
$$



This is unbounded but grows like $log$ for large $|x|$ and looks like
asinh



I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




Original answer



$newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
$$
lim_xtopm infty f(x) = 0.
$$



Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
$$
exists x_1 : x < x_1 implies |f(x)| < e
$$

and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



This means that any such function can't be continuous. Would something like
$$
f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
$$
work?






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
    $endgroup$
    – Sycorax
    Mar 20 at 18:52











  • $begingroup$
    My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
    $endgroup$
    – Ingolifs
    Mar 20 at 23:41










  • $begingroup$
    how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
    $endgroup$
    – Aksakal
    Mar 22 at 10:48










  • $begingroup$
    @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
    $endgroup$
    – jld
    Mar 22 at 17:04











  • $begingroup$
    @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
    $endgroup$
    – jld
    Mar 22 at 17:29



















6












$begingroup$

I will go ahead and turn the comment into an answer. I suggest
$$
f(x) = operatornamesign(x)logx,
$$

which has slope tending towards zero, but is unbounded.



edit by popular demand, a plot, for $|x|le 30$:
enter image description here






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398551%2flogistic-function-with-a-slope-but-no-asymptotes%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46















    10












    $begingroup$

    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46













    10












    10








    10





    $begingroup$

    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid






    share|cite|improve this answer









    $endgroup$



    You could just add a term to a logistic function:



    $$
    f(x; a, b, c, d, e)=fraca1+bexp(-cx) + dx + e
    $$



    The asymptotes will have slopes $d$.



    Here is an example with $a=10, b = 1, c = 2, d = frac120, e = -5$:



    Sigmoid







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Mar 20 at 17:02









    COOLSerdashCOOLSerdash

    16.6k75294




    16.6k75294







    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46












    • 2




      $begingroup$
      I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
      $endgroup$
      – user1717828
      Mar 21 at 1:30










    • $begingroup$
      this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
      $endgroup$
      – Aksakal
      Mar 22 at 10:46







    2




    2




    $begingroup$
    I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
    $endgroup$
    – user1717828
    Mar 21 at 1:30




    $begingroup$
    I think this answer is the best because if you zoom out far enough it's just a straight line with a little wiggle in the middle. Gives the most intuitive behavior at large x but retains the sigmoid shape.
    $endgroup$
    – user1717828
    Mar 21 at 1:30












    $begingroup$
    this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
    $endgroup$
    – Aksakal
    Mar 22 at 10:46




    $begingroup$
    this seemed to work for my dataset, and I picked it, but the solution is not ideal since the asymptotic slope doesn't decrease
    $endgroup$
    – Aksakal
    Mar 22 at 10:46













    11












    $begingroup$

    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29
















    11












    $begingroup$

    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29














    11












    11








    11





    $begingroup$

    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?






    share|cite|improve this answer











    $endgroup$



    Initially I was thinking you did want the horizontal asymptotes at $0$ still; I moved my original answer to the end. If you instead want $lim_xtopm infty f(x) = pminfty$ then would something like the inverse hyperbolic sine work?
    $$
    textasinh(x) = logleft(x + sqrt1 + x^2right)
    $$



    This is unbounded but grows like $log$ for large $|x|$ and looks like
    asinh



    I like this function a lot as a data transformation when I've got heavy tails but possibly zeros or negative values.



    Another nice thing about this function is that $textasinh'(x) = frac1sqrt1+x^2$ so it has a nice simple derivative.




    Original answer



    $newcommandevarepsilon$Let $f : mathbb Rtomathbb R$ be our function and we'll assume
    $$
    lim_xtopm infty f(x) = 0.
    $$



    Suppose $f$ is continuous. Fix $e > 0$. From the asymptotes we have
    $$
    exists x_1 : x < x_1 implies |f(x)| < e
    $$

    and analogously there's an $x_2$ such that $x > x_2 implies |f(x)| < e$. Therefore outside of $[x_1,x_2]$ $f$ is within $(-e, e)$. And $[x_1,x_2]$ is a compact interval so by continuity $f$ is bounded on it.



    This means that any such function can't be continuous. Would something like
    $$
    f(x) = begincases x^-1 & xneq 0 \ 0 & x = 0endcases
    $$
    work?







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 20 at 18:19

























    answered Mar 20 at 16:15









    jldjld

    12.4k23353




    12.4k23353







    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29













    • 2




      $begingroup$
      The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
      $endgroup$
      – Sycorax
      Mar 20 at 18:52











    • $begingroup$
      My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
      $endgroup$
      – Ingolifs
      Mar 20 at 23:41










    • $begingroup$
      how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
      $endgroup$
      – Aksakal
      Mar 22 at 10:48










    • $begingroup$
      @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
      $endgroup$
      – jld
      Mar 22 at 17:04











    • $begingroup$
      @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
      $endgroup$
      – jld
      Mar 22 at 17:29








    2




    2




    $begingroup$
    The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
    $endgroup$
    – Sycorax
    Mar 20 at 18:52





    $begingroup$
    The "Related" threads include this unanswered question, in case anyone else has asked themselves the natural followup "what happens if you use asinh in a neural network?" stats.stackexchange.com/questions/359245/…
    $endgroup$
    – Sycorax
    Mar 20 at 18:52













    $begingroup$
    My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
    $endgroup$
    – Ingolifs
    Mar 20 at 23:41




    $begingroup$
    My ears did indeed prick up. I have in the past found asinh() useful when you want to 'do log stuff' to both positive and negative numbers. It also gets around the quandry you can get in, where you need to do a log transform on data with zeros and have to judge an appropriate value of $a$ for $log(x + a)$
    $endgroup$
    – Ingolifs
    Mar 20 at 23:41












    $begingroup$
    how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
    $endgroup$
    – Aksakal
    Mar 22 at 10:48




    $begingroup$
    how could you parameterize this function to change it's shape? in particular, to regulate the slope at the inflection point
    $endgroup$
    – Aksakal
    Mar 22 at 10:48












    $begingroup$
    @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
    $endgroup$
    – jld
    Mar 22 at 17:04





    $begingroup$
    @Aksakal if $a > 0$ then just doing $acdottextasinh$ would keep the shape and asymptotics the same and the derivative is $fracasqrt1+x^2$ so the slope at zero is just $a$
    $endgroup$
    – jld
    Mar 22 at 17:04













    $begingroup$
    @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
    $endgroup$
    – jld
    Mar 22 at 17:29





    $begingroup$
    @Aksakal more generally we could consider the antiderivative of $fracasqrtc^2 + (bx)^2$ which is $$frac ab logleft(bleft(bx + sqrtc^2 + (bx)^2right)right)$$ and allows more ability to change the shape, or just something like $acdottextasinh(bx)$
    $endgroup$
    – jld
    Mar 22 at 17:29












    6












    $begingroup$

    I will go ahead and turn the comment into an answer. I suggest
    $$
    f(x) = operatornamesign(x)logx,
    $$

    which has slope tending towards zero, but is unbounded.



    edit by popular demand, a plot, for $|x|le 30$:
    enter image description here






    share|cite|improve this answer











    $endgroup$

















      6












      $begingroup$

      I will go ahead and turn the comment into an answer. I suggest
      $$
      f(x) = operatornamesign(x)logx,
      $$

      which has slope tending towards zero, but is unbounded.



      edit by popular demand, a plot, for $|x|le 30$:
      enter image description here






      share|cite|improve this answer











      $endgroup$















        6












        6








        6





        $begingroup$

        I will go ahead and turn the comment into an answer. I suggest
        $$
        f(x) = operatornamesign(x)logx,
        $$

        which has slope tending towards zero, but is unbounded.



        edit by popular demand, a plot, for $|x|le 30$:
        enter image description here






        share|cite|improve this answer











        $endgroup$



        I will go ahead and turn the comment into an answer. I suggest
        $$
        f(x) = operatornamesign(x)logx,
        $$

        which has slope tending towards zero, but is unbounded.



        edit by popular demand, a plot, for $|x|le 30$:
        enter image description here







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 21 at 22:04

























        answered Mar 20 at 18:49









        steveo'americasteveo'america

        24519




        24519



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398551%2flogistic-function-with-a-slope-but-no-asymptotes%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye