Weak star convergence of Borel probability measures on a metric spaceconvergence of total variation measureWeak convergence of measure and supportweak-*-convergence of measures ==> convergence of the total mass?Weak convergence in probability and functional analysisAre probability measures weak-* closed?Weak convergence implies convergence on continuous functionsThe Lévy metric metrizes weak convergencevague and weak topology on separable Hilbert spaceJoint convergence of measures and functions: when do integrals converge?Definition of weak convergence of probability measures and weak-* convergence

What are some good books on Machine Learning and AI like Krugman, Wells and Graddy's "Essentials of Economics"

Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?

Plagiarism or not?

Is it possible to create a QR code using text?

I would say: "You are another teacher", but she is a woman and I am a man

Apex Framework / library for consuming REST services

Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?

Im going to France and my passport expires June 19th

Why didn't Boeing produce its own regional jet?

Intersection Puzzle

Bullying boss launched a smear campaign and made me unemployable

How much of data wrangling is a data scientist's job?

How to show a landlord what we have in savings?

Examples of smooth manifolds admitting inbetween one and a continuum of complex structures

CAST throwing error when run in stored procedure but not when run as raw query

Size of subfigure fitting its content (tikzpicture)

Is "remove commented out code" correct English?

Why is consensus so controversial in Britain?

Short story with a alien planet, government officials must wear exploding medallions

What exploit Are these user agents trying to use?

Is it acceptable for a professor to tell male students to not think that they are smarter than female students?

What about the virus in 12 Monkeys?

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

What's the in-universe reasoning behind sorcerers needing material components?



Weak star convergence of Borel probability measures on a metric space


convergence of total variation measureWeak convergence of measure and supportweak-*-convergence of measures ==> convergence of the total mass?Weak convergence in probability and functional analysisAre probability measures weak-* closed?Weak convergence implies convergence on continuous functionsThe Lévy metric metrizes weak convergencevague and weak topology on separable Hilbert spaceJoint convergence of measures and functions: when do integrals converge?Definition of weak convergence of probability measures and weak-* convergence













1












$begingroup$


Let $(X,rho)$ be a compact metric space and let $P(X)$ be the set of Borel probability measures on the Borel $sigma$-algebra of $X$. Suppose $mu_n,mu in P(X)$ for $n in mathbbN$ such that $mu_n to mu$ in the weak star topology, i.e.
$$lim_ntoinftyint_X f(x) hspace1mm dmu_n(x) = int_X f(x) hspace1mm dmu(x)$$
for all continuous functions $f colon X to mathbbC$. If $E subseteq X$ is a Borel set satisfying $mu(E) = mu(textrmInt(E))$, then using the regularity of Borel measures on metric spaces, given $epsilon > 0$ we can produce compact sets $K_1 subseteq textrmInt(E), K_2 subseteq E$ and an open set $U supseteq E$ such that
$$mu(U) - mu(E), mu(E) - mu(K_1),mu(E) - mu(K_2) < epsilon.$$
By Urysohn's lemma there exist continuous functions $f colon X to [0,1]$ and $g colon X to [0,1]$ such that $textrmsupp(f) subseteq U, textrmsupp(g) subseteq textrmInt(E)$ and $f(x) = g(y) = 1$ if $x in K_2, y in K_1$. We have
$$int_X g(x) hspace1mm dmu_n(x) leq mu_n(E) leq int_X f(x) hspace1mm dmu_n(x)$$
for all $n in mathbbN$ by the construction of $f$ and $g$. By the choice of the sets $K_1,K_2,U$ and the weak star convergence of $mu_n_n=1^infty$ it follows that
$$mu(E) - epsilon leq int_X g(x) hspace1mm dmu(x) leq liminf_ntoinftymu_n(E) leq limsup_ntoinftymu_n(E) leq int_X f(x) hspace1mm dmu_n(x) leq mu(E) + epsilon.$$
This shows that $lim_ntoinftymu_n(E)$ exists and is equal to $mu(E)$.



My question is what additional assumptions do we need to conclude that $lim_ntoinftymu_n(E) = mu(E)$ holds for all Borel subsets $E subseteq X$.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I'm confused by your question. You gave an assumption on $E$ that guarantees $lim_n mu_n(E) = mu(E)$, but you end up asking what conditions on $(mu_n)_n$ and $mu$ we need to ensure that $lim_n mu(E_n) = mu(E)$ for all $E$? I'm not exactly sure what kind of answer you are looking for. Also, I think you want $X$ to be compact, so that $int_X gdmu$ always makes sense.
    $endgroup$
    – mathworker21
    Mar 21 at 5:31
















1












$begingroup$


Let $(X,rho)$ be a compact metric space and let $P(X)$ be the set of Borel probability measures on the Borel $sigma$-algebra of $X$. Suppose $mu_n,mu in P(X)$ for $n in mathbbN$ such that $mu_n to mu$ in the weak star topology, i.e.
$$lim_ntoinftyint_X f(x) hspace1mm dmu_n(x) = int_X f(x) hspace1mm dmu(x)$$
for all continuous functions $f colon X to mathbbC$. If $E subseteq X$ is a Borel set satisfying $mu(E) = mu(textrmInt(E))$, then using the regularity of Borel measures on metric spaces, given $epsilon > 0$ we can produce compact sets $K_1 subseteq textrmInt(E), K_2 subseteq E$ and an open set $U supseteq E$ such that
$$mu(U) - mu(E), mu(E) - mu(K_1),mu(E) - mu(K_2) < epsilon.$$
By Urysohn's lemma there exist continuous functions $f colon X to [0,1]$ and $g colon X to [0,1]$ such that $textrmsupp(f) subseteq U, textrmsupp(g) subseteq textrmInt(E)$ and $f(x) = g(y) = 1$ if $x in K_2, y in K_1$. We have
$$int_X g(x) hspace1mm dmu_n(x) leq mu_n(E) leq int_X f(x) hspace1mm dmu_n(x)$$
for all $n in mathbbN$ by the construction of $f$ and $g$. By the choice of the sets $K_1,K_2,U$ and the weak star convergence of $mu_n_n=1^infty$ it follows that
$$mu(E) - epsilon leq int_X g(x) hspace1mm dmu(x) leq liminf_ntoinftymu_n(E) leq limsup_ntoinftymu_n(E) leq int_X f(x) hspace1mm dmu_n(x) leq mu(E) + epsilon.$$
This shows that $lim_ntoinftymu_n(E)$ exists and is equal to $mu(E)$.



My question is what additional assumptions do we need to conclude that $lim_ntoinftymu_n(E) = mu(E)$ holds for all Borel subsets $E subseteq X$.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I'm confused by your question. You gave an assumption on $E$ that guarantees $lim_n mu_n(E) = mu(E)$, but you end up asking what conditions on $(mu_n)_n$ and $mu$ we need to ensure that $lim_n mu(E_n) = mu(E)$ for all $E$? I'm not exactly sure what kind of answer you are looking for. Also, I think you want $X$ to be compact, so that $int_X gdmu$ always makes sense.
    $endgroup$
    – mathworker21
    Mar 21 at 5:31














1












1








1





$begingroup$


Let $(X,rho)$ be a compact metric space and let $P(X)$ be the set of Borel probability measures on the Borel $sigma$-algebra of $X$. Suppose $mu_n,mu in P(X)$ for $n in mathbbN$ such that $mu_n to mu$ in the weak star topology, i.e.
$$lim_ntoinftyint_X f(x) hspace1mm dmu_n(x) = int_X f(x) hspace1mm dmu(x)$$
for all continuous functions $f colon X to mathbbC$. If $E subseteq X$ is a Borel set satisfying $mu(E) = mu(textrmInt(E))$, then using the regularity of Borel measures on metric spaces, given $epsilon > 0$ we can produce compact sets $K_1 subseteq textrmInt(E), K_2 subseteq E$ and an open set $U supseteq E$ such that
$$mu(U) - mu(E), mu(E) - mu(K_1),mu(E) - mu(K_2) < epsilon.$$
By Urysohn's lemma there exist continuous functions $f colon X to [0,1]$ and $g colon X to [0,1]$ such that $textrmsupp(f) subseteq U, textrmsupp(g) subseteq textrmInt(E)$ and $f(x) = g(y) = 1$ if $x in K_2, y in K_1$. We have
$$int_X g(x) hspace1mm dmu_n(x) leq mu_n(E) leq int_X f(x) hspace1mm dmu_n(x)$$
for all $n in mathbbN$ by the construction of $f$ and $g$. By the choice of the sets $K_1,K_2,U$ and the weak star convergence of $mu_n_n=1^infty$ it follows that
$$mu(E) - epsilon leq int_X g(x) hspace1mm dmu(x) leq liminf_ntoinftymu_n(E) leq limsup_ntoinftymu_n(E) leq int_X f(x) hspace1mm dmu_n(x) leq mu(E) + epsilon.$$
This shows that $lim_ntoinftymu_n(E)$ exists and is equal to $mu(E)$.



My question is what additional assumptions do we need to conclude that $lim_ntoinftymu_n(E) = mu(E)$ holds for all Borel subsets $E subseteq X$.










share|cite|improve this question











$endgroup$




Let $(X,rho)$ be a compact metric space and let $P(X)$ be the set of Borel probability measures on the Borel $sigma$-algebra of $X$. Suppose $mu_n,mu in P(X)$ for $n in mathbbN$ such that $mu_n to mu$ in the weak star topology, i.e.
$$lim_ntoinftyint_X f(x) hspace1mm dmu_n(x) = int_X f(x) hspace1mm dmu(x)$$
for all continuous functions $f colon X to mathbbC$. If $E subseteq X$ is a Borel set satisfying $mu(E) = mu(textrmInt(E))$, then using the regularity of Borel measures on metric spaces, given $epsilon > 0$ we can produce compact sets $K_1 subseteq textrmInt(E), K_2 subseteq E$ and an open set $U supseteq E$ such that
$$mu(U) - mu(E), mu(E) - mu(K_1),mu(E) - mu(K_2) < epsilon.$$
By Urysohn's lemma there exist continuous functions $f colon X to [0,1]$ and $g colon X to [0,1]$ such that $textrmsupp(f) subseteq U, textrmsupp(g) subseteq textrmInt(E)$ and $f(x) = g(y) = 1$ if $x in K_2, y in K_1$. We have
$$int_X g(x) hspace1mm dmu_n(x) leq mu_n(E) leq int_X f(x) hspace1mm dmu_n(x)$$
for all $n in mathbbN$ by the construction of $f$ and $g$. By the choice of the sets $K_1,K_2,U$ and the weak star convergence of $mu_n_n=1^infty$ it follows that
$$mu(E) - epsilon leq int_X g(x) hspace1mm dmu(x) leq liminf_ntoinftymu_n(E) leq limsup_ntoinftymu_n(E) leq int_X f(x) hspace1mm dmu_n(x) leq mu(E) + epsilon.$$
This shows that $lim_ntoinftymu_n(E)$ exists and is equal to $mu(E)$.



My question is what additional assumptions do we need to conclude that $lim_ntoinftymu_n(E) = mu(E)$ holds for all Borel subsets $E subseteq X$.







real-analysis functional-analysis measure-theory weak-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 21 at 5:38







Ethan Alwaise

















asked Mar 21 at 5:16









Ethan AlwaiseEthan Alwaise

6,471717




6,471717











  • $begingroup$
    I'm confused by your question. You gave an assumption on $E$ that guarantees $lim_n mu_n(E) = mu(E)$, but you end up asking what conditions on $(mu_n)_n$ and $mu$ we need to ensure that $lim_n mu(E_n) = mu(E)$ for all $E$? I'm not exactly sure what kind of answer you are looking for. Also, I think you want $X$ to be compact, so that $int_X gdmu$ always makes sense.
    $endgroup$
    – mathworker21
    Mar 21 at 5:31

















  • $begingroup$
    I'm confused by your question. You gave an assumption on $E$ that guarantees $lim_n mu_n(E) = mu(E)$, but you end up asking what conditions on $(mu_n)_n$ and $mu$ we need to ensure that $lim_n mu(E_n) = mu(E)$ for all $E$? I'm not exactly sure what kind of answer you are looking for. Also, I think you want $X$ to be compact, so that $int_X gdmu$ always makes sense.
    $endgroup$
    – mathworker21
    Mar 21 at 5:31
















$begingroup$
I'm confused by your question. You gave an assumption on $E$ that guarantees $lim_n mu_n(E) = mu(E)$, but you end up asking what conditions on $(mu_n)_n$ and $mu$ we need to ensure that $lim_n mu(E_n) = mu(E)$ for all $E$? I'm not exactly sure what kind of answer you are looking for. Also, I think you want $X$ to be compact, so that $int_X gdmu$ always makes sense.
$endgroup$
– mathworker21
Mar 21 at 5:31





$begingroup$
I'm confused by your question. You gave an assumption on $E$ that guarantees $lim_n mu_n(E) = mu(E)$, but you end up asking what conditions on $(mu_n)_n$ and $mu$ we need to ensure that $lim_n mu(E_n) = mu(E)$ for all $E$? I'm not exactly sure what kind of answer you are looking for. Also, I think you want $X$ to be compact, so that $int_X gdmu$ always makes sense.
$endgroup$
– mathworker21
Mar 21 at 5:31











0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156373%2fweak-star-convergence-of-borel-probability-measures-on-a-metric-space%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156373%2fweak-star-convergence-of-borel-probability-measures-on-a-metric-space%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee