How to find the MLE of these parameters given distribution?Minimally Sufficient Statistic for Bivariate DistributionAssuming $sigma$ is known, find a method of moments estimator of $mu$. (Location-scale family of exponential distribution)finding the maximum likelihood estimator of location scale family of exponential distributionsComputation of a likelihood for a discrete variableDistribution of minimum of 2 INID random variables when one is transformed.Find joint density function of X and X+Y (exponential distribution)Maximum a Posteriori estimation of the parameter of a exponential distribution with a gaussian priorfind joint distribution $min (X,Y)$ and $W$, where W is a discrete distributionWhy are cross expectations zero in MLE?how fitting a Gaussian approximation to the likelihood curve at maximum?

ssTTsSTtRrriinInnnnNNNIiinngg

Avoiding the "not like other girls" trope?

Venezuelan girlfriend wants to travel the USA to be with me. What is the process?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Is there a hemisphere-neutral way of specifying a season?

Why would the Red Woman birth a shadow if she worshipped the Lord of the Light?

How do I deal with an unproductive colleague in a small company?

Watching something be piped to a file live with tail

Do UK voters know if their MP will be the Speaker of the House?

What does the expression "A Mann!" means

What killed these X2 caps?

How to prevent "they're falling in love" trope

Why didn't Miles's spider sense work before?

Ambiguity in the definition of entropy

How can I determine if the org that I'm currently connected to is a scratch org?

Do scales need to be in alphabetical order?

How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

How badly should I try to prevent a user from XSSing themselves?

Detention in 1997

Cursor Replacement for Newbies

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

How to show a landlord what we have in savings?

Should I tell management that I intend to leave due to bad software development practices?



How to find the MLE of these parameters given distribution?


Minimally Sufficient Statistic for Bivariate DistributionAssuming $sigma$ is known, find a method of moments estimator of $mu$. (Location-scale family of exponential distribution)finding the maximum likelihood estimator of location scale family of exponential distributionsComputation of a likelihood for a discrete variableDistribution of minimum of 2 INID random variables when one is transformed.Find joint density function of X and X+Y (exponential distribution)Maximum a Posteriori estimation of the parameter of a exponential distribution with a gaussian priorfind joint distribution $min (X,Y)$ and $W$, where W is a discrete distributionWhy are cross expectations zero in MLE?how fitting a Gaussian approximation to the likelihood curve at maximum?













1












$begingroup$


Let $X$ and $Y$ be independent exponential random variables, with



$$f(xmidlambda)=frac1lambdaexpleft(-fracxlambdaright),,x>0,, qquad f(ymidmu)=frac1muexpleft(-fracymuright),,y>0$$



We observe $Z$ and $W$ with $Z=min(X,Y)$, and $W=begincases 1 &,textif Z=X\ 0 &,textif Z=Y endcases$



I have obtained the joint distribution of $Z$ and $W$, i.e.,
$$P(Z leq z, W=0)=fraclambdamu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



$$P(Z leq z, W=1)=fracmumu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



Now assume that $(Z_i,W_i),i=1,cdots,n$, are $n$ i.i.d observations. Find the MLEs of $lambda$ and $mu$.



(This is the exercise 7.14 of the book Statistical Inference 2nd edition, but no solution given)










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    Let $X$ and $Y$ be independent exponential random variables, with



    $$f(xmidlambda)=frac1lambdaexpleft(-fracxlambdaright),,x>0,, qquad f(ymidmu)=frac1muexpleft(-fracymuright),,y>0$$



    We observe $Z$ and $W$ with $Z=min(X,Y)$, and $W=begincases 1 &,textif Z=X\ 0 &,textif Z=Y endcases$



    I have obtained the joint distribution of $Z$ and $W$, i.e.,
    $$P(Z leq z, W=0)=fraclambdamu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



    $$P(Z leq z, W=1)=fracmumu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



    Now assume that $(Z_i,W_i),i=1,cdots,n$, are $n$ i.i.d observations. Find the MLEs of $lambda$ and $mu$.



    (This is the exercise 7.14 of the book Statistical Inference 2nd edition, but no solution given)










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      0



      $begingroup$


      Let $X$ and $Y$ be independent exponential random variables, with



      $$f(xmidlambda)=frac1lambdaexpleft(-fracxlambdaright),,x>0,, qquad f(ymidmu)=frac1muexpleft(-fracymuright),,y>0$$



      We observe $Z$ and $W$ with $Z=min(X,Y)$, and $W=begincases 1 &,textif Z=X\ 0 &,textif Z=Y endcases$



      I have obtained the joint distribution of $Z$ and $W$, i.e.,
      $$P(Z leq z, W=0)=fraclambdamu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



      $$P(Z leq z, W=1)=fracmumu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



      Now assume that $(Z_i,W_i),i=1,cdots,n$, are $n$ i.i.d observations. Find the MLEs of $lambda$ and $mu$.



      (This is the exercise 7.14 of the book Statistical Inference 2nd edition, but no solution given)










      share|cite|improve this question











      $endgroup$




      Let $X$ and $Y$ be independent exponential random variables, with



      $$f(xmidlambda)=frac1lambdaexpleft(-fracxlambdaright),,x>0,, qquad f(ymidmu)=frac1muexpleft(-fracymuright),,y>0$$



      We observe $Z$ and $W$ with $Z=min(X,Y)$, and $W=begincases 1 &,textif Z=X\ 0 &,textif Z=Y endcases$



      I have obtained the joint distribution of $Z$ and $W$, i.e.,
      $$P(Z leq z, W=0)=fraclambdamu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



      $$P(Z leq z, W=1)=fracmumu+lambdaleft[1-expleft(-left(frac1mu+frac1lambdaright)zright)right]$$



      Now assume that $(Z_i,W_i),i=1,cdots,n$, are $n$ i.i.d observations. Find the MLEs of $lambda$ and $mu$.



      (This is the exercise 7.14 of the book Statistical Inference 2nd edition, but no solution given)







      statistics maximum-likelihood exponential-distribution censoring






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 21 at 10:03









      StubbornAtom

      6,29831440




      6,29831440










      asked Mar 21 at 7:16









      Tim XuTim Xu

      63




      63




















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Note that $Z$ and $W$ are in fact independent.



          For $z>0,,,win0,1$, you can write the joint distribution of $(Z,W)$ as



          $$P(z,w)=frac1lambda^w mu^1-wexpleft[-left(frac1lambda+frac1muright)zright]$$



          The above formulation is not completely rigorous as it is not a probability (I am searching for a better notation avoiding the dirac delta).



          The likelihood function given the sample $(z_1,w_1),ldots,(z_n,w_n)$ is then



          $$L(lambda,mu)=frac1lambda^sum_i=1^n w_imu^n-sum_i=1^n w_iexpleft[-left(frac1lambda+frac1muright)sum_i=1^n z_iright]$$



          Log-likelihood is



          $$ell(lambda,mu)=-sum_i=1^n w_ilnlambda-left(n-sum_i=1^n w_iright)lnmu--left(frac1lambda+frac1muright)sum_i=1^n z_i$$



          For $0<bar w<1$, solving for the stationary points of $ell(lambda,mu)$ yields $$hatlambda=fracsum_i=1^n z_isum_i=1^n w_i=fracbar zbar wqquad,qquad hatmu=fracsum_i=1^n z_in-sum_i=1^n w_i=fracbar z1-bar w$$



          So assuming $0<bar w<1$, the unique MLE of $(lambda,mu)$ is $(hatlambda,hatmu)$.



          But when $bar win0,1$, the MLE does not exist.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
            $endgroup$
            – Tim Xu
            Mar 21 at 12:08











          • $begingroup$
            You are right about the log-likelihood. I will edit.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:18










          • $begingroup$
            @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:35



















          0












          $begingroup$

          The $W=0$ and the $W=1$ case can be combined by writing $lambda^1-Wmu^W$.



          First differentiating w.r.t. $z$ and forming the product the likelihood can be written as $prod_i^nfrac1lambda^w_imu^1-w_ie^-(frac1lambda+frac1mu)z_i$.
          Taking logs gives the log likelihood $=-sum_i^n(w_ilnlambda+(1-w_i)lnmu+(frac1lambda+frac1mu)z_i)$.



          Maximising wrt $lambda$ and $mu$ gives $lambda=fracbarzbarw$ and $mu=fracbarz(1-barw)$



          Note if $lambda=mu$ then $barwapproxfrac12$ so the estimates for $lambda$ and $mu$ become equal.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
            $endgroup$
            – Tim Xu
            Mar 21 at 11:44











          • $begingroup$
            Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
            $endgroup$
            – user121049
            Mar 21 at 14:09











          • $begingroup$
            You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
            $endgroup$
            – Tim Xu
            Mar 22 at 6:41












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156467%2fhow-to-find-the-mle-of-these-parameters-given-distribution%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Note that $Z$ and $W$ are in fact independent.



          For $z>0,,,win0,1$, you can write the joint distribution of $(Z,W)$ as



          $$P(z,w)=frac1lambda^w mu^1-wexpleft[-left(frac1lambda+frac1muright)zright]$$



          The above formulation is not completely rigorous as it is not a probability (I am searching for a better notation avoiding the dirac delta).



          The likelihood function given the sample $(z_1,w_1),ldots,(z_n,w_n)$ is then



          $$L(lambda,mu)=frac1lambda^sum_i=1^n w_imu^n-sum_i=1^n w_iexpleft[-left(frac1lambda+frac1muright)sum_i=1^n z_iright]$$



          Log-likelihood is



          $$ell(lambda,mu)=-sum_i=1^n w_ilnlambda-left(n-sum_i=1^n w_iright)lnmu--left(frac1lambda+frac1muright)sum_i=1^n z_i$$



          For $0<bar w<1$, solving for the stationary points of $ell(lambda,mu)$ yields $$hatlambda=fracsum_i=1^n z_isum_i=1^n w_i=fracbar zbar wqquad,qquad hatmu=fracsum_i=1^n z_in-sum_i=1^n w_i=fracbar z1-bar w$$



          So assuming $0<bar w<1$, the unique MLE of $(lambda,mu)$ is $(hatlambda,hatmu)$.



          But when $bar win0,1$, the MLE does not exist.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
            $endgroup$
            – Tim Xu
            Mar 21 at 12:08











          • $begingroup$
            You are right about the log-likelihood. I will edit.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:18










          • $begingroup$
            @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:35
















          1












          $begingroup$

          Note that $Z$ and $W$ are in fact independent.



          For $z>0,,,win0,1$, you can write the joint distribution of $(Z,W)$ as



          $$P(z,w)=frac1lambda^w mu^1-wexpleft[-left(frac1lambda+frac1muright)zright]$$



          The above formulation is not completely rigorous as it is not a probability (I am searching for a better notation avoiding the dirac delta).



          The likelihood function given the sample $(z_1,w_1),ldots,(z_n,w_n)$ is then



          $$L(lambda,mu)=frac1lambda^sum_i=1^n w_imu^n-sum_i=1^n w_iexpleft[-left(frac1lambda+frac1muright)sum_i=1^n z_iright]$$



          Log-likelihood is



          $$ell(lambda,mu)=-sum_i=1^n w_ilnlambda-left(n-sum_i=1^n w_iright)lnmu--left(frac1lambda+frac1muright)sum_i=1^n z_i$$



          For $0<bar w<1$, solving for the stationary points of $ell(lambda,mu)$ yields $$hatlambda=fracsum_i=1^n z_isum_i=1^n w_i=fracbar zbar wqquad,qquad hatmu=fracsum_i=1^n z_in-sum_i=1^n w_i=fracbar z1-bar w$$



          So assuming $0<bar w<1$, the unique MLE of $(lambda,mu)$ is $(hatlambda,hatmu)$.



          But when $bar win0,1$, the MLE does not exist.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
            $endgroup$
            – Tim Xu
            Mar 21 at 12:08











          • $begingroup$
            You are right about the log-likelihood. I will edit.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:18










          • $begingroup$
            @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:35














          1












          1








          1





          $begingroup$

          Note that $Z$ and $W$ are in fact independent.



          For $z>0,,,win0,1$, you can write the joint distribution of $(Z,W)$ as



          $$P(z,w)=frac1lambda^w mu^1-wexpleft[-left(frac1lambda+frac1muright)zright]$$



          The above formulation is not completely rigorous as it is not a probability (I am searching for a better notation avoiding the dirac delta).



          The likelihood function given the sample $(z_1,w_1),ldots,(z_n,w_n)$ is then



          $$L(lambda,mu)=frac1lambda^sum_i=1^n w_imu^n-sum_i=1^n w_iexpleft[-left(frac1lambda+frac1muright)sum_i=1^n z_iright]$$



          Log-likelihood is



          $$ell(lambda,mu)=-sum_i=1^n w_ilnlambda-left(n-sum_i=1^n w_iright)lnmu--left(frac1lambda+frac1muright)sum_i=1^n z_i$$



          For $0<bar w<1$, solving for the stationary points of $ell(lambda,mu)$ yields $$hatlambda=fracsum_i=1^n z_isum_i=1^n w_i=fracbar zbar wqquad,qquad hatmu=fracsum_i=1^n z_in-sum_i=1^n w_i=fracbar z1-bar w$$



          So assuming $0<bar w<1$, the unique MLE of $(lambda,mu)$ is $(hatlambda,hatmu)$.



          But when $bar win0,1$, the MLE does not exist.






          share|cite|improve this answer











          $endgroup$



          Note that $Z$ and $W$ are in fact independent.



          For $z>0,,,win0,1$, you can write the joint distribution of $(Z,W)$ as



          $$P(z,w)=frac1lambda^w mu^1-wexpleft[-left(frac1lambda+frac1muright)zright]$$



          The above formulation is not completely rigorous as it is not a probability (I am searching for a better notation avoiding the dirac delta).



          The likelihood function given the sample $(z_1,w_1),ldots,(z_n,w_n)$ is then



          $$L(lambda,mu)=frac1lambda^sum_i=1^n w_imu^n-sum_i=1^n w_iexpleft[-left(frac1lambda+frac1muright)sum_i=1^n z_iright]$$



          Log-likelihood is



          $$ell(lambda,mu)=-sum_i=1^n w_ilnlambda-left(n-sum_i=1^n w_iright)lnmu--left(frac1lambda+frac1muright)sum_i=1^n z_i$$



          For $0<bar w<1$, solving for the stationary points of $ell(lambda,mu)$ yields $$hatlambda=fracsum_i=1^n z_isum_i=1^n w_i=fracbar zbar wqquad,qquad hatmu=fracsum_i=1^n z_in-sum_i=1^n w_i=fracbar z1-bar w$$



          So assuming $0<bar w<1$, the unique MLE of $(lambda,mu)$ is $(hatlambda,hatmu)$.



          But when $bar win0,1$, the MLE does not exist.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 21 at 12:29

























          answered Mar 21 at 11:41









          StubbornAtomStubbornAtom

          6,29831440




          6,29831440











          • $begingroup$
            I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
            $endgroup$
            – Tim Xu
            Mar 21 at 12:08











          • $begingroup$
            You are right about the log-likelihood. I will edit.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:18










          • $begingroup$
            @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:35

















          • $begingroup$
            I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
            $endgroup$
            – Tim Xu
            Mar 21 at 12:08











          • $begingroup$
            You are right about the log-likelihood. I will edit.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:18










          • $begingroup$
            @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
            $endgroup$
            – StubbornAtom
            Mar 21 at 12:35
















          $begingroup$
          I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
          $endgroup$
          – Tim Xu
          Mar 21 at 12:08





          $begingroup$
          I still have two questions. (Q1) How to solve for the stationary points of $ell(lambda,mu)$? (Q2) Why do we need to discuss the value range of $barw$? (In addition) Shouldn't the $mu$ in your Log-likelihood is $lnmu$?
          $endgroup$
          – Tim Xu
          Mar 21 at 12:08













          $begingroup$
          You are right about the log-likelihood. I will edit.
          $endgroup$
          – StubbornAtom
          Mar 21 at 12:18




          $begingroup$
          You are right about the log-likelihood. I will edit.
          $endgroup$
          – StubbornAtom
          Mar 21 at 12:18












          $begingroup$
          @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
          $endgroup$
          – StubbornAtom
          Mar 21 at 12:35





          $begingroup$
          @TimXu I just differentiated $ell$ once wrt $lambda$ and $mu$ and set them equal to zero (for multiple parameters, one should ideally check whether the Hessian matrix of the log-likelihood is negative definite at $(hatlambda,hatmu)$, provided the derivatives exist). And you can see from the expression for $hatlambda,hatmu$ that they are not defined at $bar w=0,1$. Hence the range distinction.
          $endgroup$
          – StubbornAtom
          Mar 21 at 12:35












          0












          $begingroup$

          The $W=0$ and the $W=1$ case can be combined by writing $lambda^1-Wmu^W$.



          First differentiating w.r.t. $z$ and forming the product the likelihood can be written as $prod_i^nfrac1lambda^w_imu^1-w_ie^-(frac1lambda+frac1mu)z_i$.
          Taking logs gives the log likelihood $=-sum_i^n(w_ilnlambda+(1-w_i)lnmu+(frac1lambda+frac1mu)z_i)$.



          Maximising wrt $lambda$ and $mu$ gives $lambda=fracbarzbarw$ and $mu=fracbarz(1-barw)$



          Note if $lambda=mu$ then $barwapproxfrac12$ so the estimates for $lambda$ and $mu$ become equal.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
            $endgroup$
            – Tim Xu
            Mar 21 at 11:44











          • $begingroup$
            Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
            $endgroup$
            – user121049
            Mar 21 at 14:09











          • $begingroup$
            You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
            $endgroup$
            – Tim Xu
            Mar 22 at 6:41
















          0












          $begingroup$

          The $W=0$ and the $W=1$ case can be combined by writing $lambda^1-Wmu^W$.



          First differentiating w.r.t. $z$ and forming the product the likelihood can be written as $prod_i^nfrac1lambda^w_imu^1-w_ie^-(frac1lambda+frac1mu)z_i$.
          Taking logs gives the log likelihood $=-sum_i^n(w_ilnlambda+(1-w_i)lnmu+(frac1lambda+frac1mu)z_i)$.



          Maximising wrt $lambda$ and $mu$ gives $lambda=fracbarzbarw$ and $mu=fracbarz(1-barw)$



          Note if $lambda=mu$ then $barwapproxfrac12$ so the estimates for $lambda$ and $mu$ become equal.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
            $endgroup$
            – Tim Xu
            Mar 21 at 11:44











          • $begingroup$
            Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
            $endgroup$
            – user121049
            Mar 21 at 14:09











          • $begingroup$
            You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
            $endgroup$
            – Tim Xu
            Mar 22 at 6:41














          0












          0








          0





          $begingroup$

          The $W=0$ and the $W=1$ case can be combined by writing $lambda^1-Wmu^W$.



          First differentiating w.r.t. $z$ and forming the product the likelihood can be written as $prod_i^nfrac1lambda^w_imu^1-w_ie^-(frac1lambda+frac1mu)z_i$.
          Taking logs gives the log likelihood $=-sum_i^n(w_ilnlambda+(1-w_i)lnmu+(frac1lambda+frac1mu)z_i)$.



          Maximising wrt $lambda$ and $mu$ gives $lambda=fracbarzbarw$ and $mu=fracbarz(1-barw)$



          Note if $lambda=mu$ then $barwapproxfrac12$ so the estimates for $lambda$ and $mu$ become equal.






          share|cite|improve this answer









          $endgroup$



          The $W=0$ and the $W=1$ case can be combined by writing $lambda^1-Wmu^W$.



          First differentiating w.r.t. $z$ and forming the product the likelihood can be written as $prod_i^nfrac1lambda^w_imu^1-w_ie^-(frac1lambda+frac1mu)z_i$.
          Taking logs gives the log likelihood $=-sum_i^n(w_ilnlambda+(1-w_i)lnmu+(frac1lambda+frac1mu)z_i)$.



          Maximising wrt $lambda$ and $mu$ gives $lambda=fracbarzbarw$ and $mu=fracbarz(1-barw)$



          Note if $lambda=mu$ then $barwapproxfrac12$ so the estimates for $lambda$ and $mu$ become equal.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 21 at 8:40









          user121049user121049

          1,360174




          1,360174











          • $begingroup$
            Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
            $endgroup$
            – Tim Xu
            Mar 21 at 11:44











          • $begingroup$
            Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
            $endgroup$
            – user121049
            Mar 21 at 14:09











          • $begingroup$
            You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
            $endgroup$
            – Tim Xu
            Mar 22 at 6:41

















          • $begingroup$
            Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
            $endgroup$
            – Tim Xu
            Mar 21 at 11:44











          • $begingroup$
            Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
            $endgroup$
            – user121049
            Mar 21 at 14:09











          • $begingroup$
            You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
            $endgroup$
            – Tim Xu
            Mar 22 at 6:41
















          $begingroup$
          Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
          $endgroup$
          – Tim Xu
          Mar 21 at 11:44





          $begingroup$
          Denote the log likelihood by $log L$. First differentiating w.r.t. $lambda$ and $mu$, gives $hatlambda=fracbarzbarw$, $hatmu=fracbarz1-barw$. To make sure they are the maximizers of the log likelihood. I calculate their second-order differentials w.r.t. $lambda$ and $mu$, and get that $fracpartial^2 log Lpartial lambda^2=-sum_i=1^n(-fracw_ilambda^2+2fracz_ilambda^3)$ and $fracpartial^2 log Lpartial mu^2=-sum_i=1^n(-frac1-w_imu^2+2fracz_imu^3)$. How do you know these two second-order differentials are negative?
          $endgroup$
          – Tim Xu
          Mar 21 at 11:44













          $begingroup$
          Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
          $endgroup$
          – user121049
          Mar 21 at 14:09





          $begingroup$
          Direct substitution. for instance $fracpartial^2 logLpartial lambda^2=-fracbarw^3barz^2$
          $endgroup$
          – user121049
          Mar 21 at 14:09













          $begingroup$
          You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
          $endgroup$
          – Tim Xu
          Mar 22 at 6:41





          $begingroup$
          You missed an $n$. It is $fracpartial ^2 logLpartial lambda^2 |_lambda=fracbar zbar w= -sum_i=1^n (-fracw_ilambda^2+2fracz_ilambda^3) |_lambda=fracbar zbar w= (fracsum_i=1^n w_ilambda^2-2fracsum_i=1^n z_ilambda^3) |_lambda=fracbar zbar w= (fracn bar wlambda^2-2fracn bar zlambda^3) |_lambda=fracbar zbar w= fracn bar w^3bar z^2-2fracn bar z bar w^3bar z^3= fracn bar w^3bar z^2-2fracn bar w^3bar z^2=-fracn bar w^3bar z^2$
          $endgroup$
          – Tim Xu
          Mar 22 at 6:41


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156467%2fhow-to-find-the-mle-of-these-parameters-given-distribution%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

          random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

          Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye