Divergence of this series and further investigationWays to make a series diverge “faster” to show divergenceHelp with proving that this series divergesProving the convergence/divergence of a seemingly oscillating seriesConvergence and Divergence and Using Various MethodsSeries Divergence ProofProving divergence of a sequenceNewton-Raphson method for the functionThe choice of $epsilon$ in the proofs of divergenceDivergence of power seriesA Sequence converges or diverges

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

I would say: "You are another teacher", but she is a woman and I am a man

Why is consensus so controversial in Britain?

How much of data wrangling is a data scientist's job?

Can we compute the area of a quadrilateral with one right angle when we only know the lengths of any three sides?

Why didn't Boeing produce its own regional jet?

What mechanic is there to disable a threat instead of killing it?

Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?

Why no variance term in Bayesian logistic regression?

Extract rows of a table, that include less than x NULLs

Why didn't Miles's spider sense work before?

Solving a recurrence relation (poker chips)

How do I gain back my faith in my PhD degree?

Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?

Alternative to sending password over mail?

What is a romance in Latin?

Avoiding direct proof while writing proof by induction

Apex Framework / library for consuming REST services

Why can't we play rap on piano?

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

What does the expression "A Mann!" means

Plagiarism or not?

One verb to replace 'be a member of' a club

How to tell a function to use the default argument values?



Divergence of this series and further investigation


Ways to make a series diverge “faster” to show divergenceHelp with proving that this series divergesProving the convergence/divergence of a seemingly oscillating seriesConvergence and Divergence and Using Various MethodsSeries Divergence ProofProving divergence of a sequenceNewton-Raphson method for the functionThe choice of $epsilon$ in the proofs of divergenceDivergence of power seriesA Sequence converges or diverges













1












$begingroup$


I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.



As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.



I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?










share|cite|improve this question











$endgroup$











  • $begingroup$
    So its two terms added, then 1 term subtracted?
    $endgroup$
    – Don Thousand
    Mar 21 at 5:49










  • $begingroup$
    @DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:50










  • $begingroup$
    @DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:51










  • $begingroup$
    @SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:52















1












$begingroup$


I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.



As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.



I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?










share|cite|improve this question











$endgroup$











  • $begingroup$
    So its two terms added, then 1 term subtracted?
    $endgroup$
    – Don Thousand
    Mar 21 at 5:49










  • $begingroup$
    @DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:50










  • $begingroup$
    @DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:51










  • $begingroup$
    @SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:52













1












1








1





$begingroup$


I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.



As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.



I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?










share|cite|improve this question











$endgroup$




I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.



As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.



I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?







calculus sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 21 at 5:54







Ryan Goulden

















asked Mar 21 at 5:38









Ryan GouldenRyan Goulden

500310




500310











  • $begingroup$
    So its two terms added, then 1 term subtracted?
    $endgroup$
    – Don Thousand
    Mar 21 at 5:49










  • $begingroup$
    @DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:50










  • $begingroup$
    @DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:51










  • $begingroup$
    @SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:52
















  • $begingroup$
    So its two terms added, then 1 term subtracted?
    $endgroup$
    – Don Thousand
    Mar 21 at 5:49










  • $begingroup$
    @DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:50










  • $begingroup$
    @DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:51










  • $begingroup$
    @SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
    $endgroup$
    – Ryan Goulden
    Mar 21 at 5:52















$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49




$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49












$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50




$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50












$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51




$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51












$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52




$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52










1 Answer
1






active

oldest

votes


















4












$begingroup$

Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Wow, that's so simple I feel utterly dumb for not immediately thinking that...
    $endgroup$
    – Don Thousand
    Mar 21 at 5:57










  • $begingroup$
    Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
    $endgroup$
    – Greg Martin
    Mar 21 at 6:02











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156391%2fdivergence-of-this-series-and-further-investigation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Wow, that's so simple I feel utterly dumb for not immediately thinking that...
    $endgroup$
    – Don Thousand
    Mar 21 at 5:57










  • $begingroup$
    Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
    $endgroup$
    – Greg Martin
    Mar 21 at 6:02















4












$begingroup$

Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Wow, that's so simple I feel utterly dumb for not immediately thinking that...
    $endgroup$
    – Don Thousand
    Mar 21 at 5:57










  • $begingroup$
    Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
    $endgroup$
    – Greg Martin
    Mar 21 at 6:02













4












4








4





$begingroup$

Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.






share|cite|improve this answer









$endgroup$



Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 21 at 5:55









Greg MartinGreg Martin

36.5k23565




36.5k23565











  • $begingroup$
    Wow, that's so simple I feel utterly dumb for not immediately thinking that...
    $endgroup$
    – Don Thousand
    Mar 21 at 5:57










  • $begingroup$
    Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
    $endgroup$
    – Greg Martin
    Mar 21 at 6:02
















  • $begingroup$
    Wow, that's so simple I feel utterly dumb for not immediately thinking that...
    $endgroup$
    – Don Thousand
    Mar 21 at 5:57










  • $begingroup$
    Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
    $endgroup$
    – Greg Martin
    Mar 21 at 6:02















$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57




$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57












$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02




$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156391%2fdivergence-of-this-series-and-further-investigation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye