Divergence of this series and further investigationWays to make a series diverge “faster” to show divergenceHelp with proving that this series divergesProving the convergence/divergence of a seemingly oscillating seriesConvergence and Divergence and Using Various MethodsSeries Divergence ProofProving divergence of a sequenceNewton-Raphson method for the functionThe choice of $epsilon$ in the proofs of divergenceDivergence of power seriesA Sequence converges or diverges
Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?
I would say: "You are another teacher", but she is a woman and I am a man
Why is consensus so controversial in Britain?
How much of data wrangling is a data scientist's job?
Can we compute the area of a quadrilateral with one right angle when we only know the lengths of any three sides?
Why didn't Boeing produce its own regional jet?
What mechanic is there to disable a threat instead of killing it?
Are there any examples of a variable being normally distributed that is *not* due to the Central Limit Theorem?
Why no variance term in Bayesian logistic regression?
Extract rows of a table, that include less than x NULLs
Why didn't Miles's spider sense work before?
Solving a recurrence relation (poker chips)
How do I gain back my faith in my PhD degree?
Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?
Alternative to sending password over mail?
What is a romance in Latin?
Avoiding direct proof while writing proof by induction
Apex Framework / library for consuming REST services
Why can't we play rap on piano?
GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?
What does the expression "A Mann!" means
Plagiarism or not?
One verb to replace 'be a member of' a club
How to tell a function to use the default argument values?
Divergence of this series and further investigation
Ways to make a series diverge “faster” to show divergenceHelp with proving that this series divergesProving the convergence/divergence of a seemingly oscillating seriesConvergence and Divergence and Using Various MethodsSeries Divergence ProofProving divergence of a sequenceNewton-Raphson method for the functionThe choice of $epsilon$ in the proofs of divergenceDivergence of power seriesA Sequence converges or diverges
$begingroup$
I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.
As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.
I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?
calculus sequences-and-series
$endgroup$
add a comment |
$begingroup$
I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.
As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.
I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?
calculus sequences-and-series
$endgroup$
$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49
$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50
$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51
$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52
add a comment |
$begingroup$
I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.
As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.
I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?
calculus sequences-and-series
$endgroup$
I was wondering if $1 + frac12 - frac13 +frac14 + frac15 - frac16+...$ diverges? I suspect that it does. I found the general term as $$frac2n^2 -1 - 3floor(frac2n^23)n,$$ which, to me, strongly suggested divergence, but I can't quite formalise the argument from there.
As a further investigation, I'm curious if there exists a function such that $sum |f(n)|$ diverges, but
$$f(1) - f(2) + f(3) ...,$$
$$f(1)+f(2)-f(3)+f(4)+f(5)-f(6)+...,$$
$$f(1)+f(2)+f(3)-f(4)+...$$
And so on, all converge.
I apologise for the bad formatting and notation, I don't know a better way to express the question, but I can clarify anything need be. I know this is technically two questions, but I wanted to also show that $f(n) = frac1n$ is not such a function, which made me curious if there IS such a function satisfying the above; if so, what are the necessary conditions a function must have for this to be true?
calculus sequences-and-series
calculus sequences-and-series
edited Mar 21 at 5:54
Ryan Goulden
asked Mar 21 at 5:38
Ryan GouldenRyan Goulden
500310
500310
$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49
$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50
$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51
$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52
add a comment |
$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49
$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50
$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51
$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52
$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49
$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49
$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50
$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50
$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51
$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51
$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52
$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.
$endgroup$
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156391%2fdivergence-of-this-series-and-further-investigation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.
$endgroup$
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
add a comment |
$begingroup$
Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.
$endgroup$
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
add a comment |
$begingroup$
Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.
$endgroup$
Hint: $1+frac12-frac13+frac14+frac15-frac16+cdots+frac13k-2+frac13k-1-frac13k > 1+frac14+cdots+frac13k-2$.
answered Mar 21 at 5:55
Greg MartinGreg Martin
36.5k23565
36.5k23565
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
add a comment |
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Wow, that's so simple I feel utterly dumb for not immediately thinking that...
$endgroup$
– Don Thousand
Mar 21 at 5:57
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
$begingroup$
Everything is simpler after we see the idea! No need to feel dumb. Indeed, a better answer (though less simple) is: the 1 (mod 3) terms up to $x$ add up to roughly $frac13log x$ (makes sense, given how the harmonic series itself grows); the 2 (mod 3) terms up to $x$ add up to roughly $frac13log x$ as well; and the 0 (mod 3) terms up to $x$ add up to roughly $-frac13log x$. You get the actual asymptotic rate of divergence this way; and it generalizes to any periodic sequence of signs (indeed of general coefficients): it converges if and only if the coefficients sum to $0$ in each period.
$endgroup$
– Greg Martin
Mar 21 at 6:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156391%2fdivergence-of-this-series-and-further-investigation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
So its two terms added, then 1 term subtracted?
$endgroup$
– Don Thousand
Mar 21 at 5:49
$begingroup$
@DonThousand correct. Similar to an alternating series, where every second term is negative, this has it so that every third term is negative, the rest being positive.
$endgroup$
– Ryan Goulden
Mar 21 at 5:50
$begingroup$
@DonThousand the numerator in the general term I found for the sequence resolves to (1,1,-1,1,1,-1,...)
$endgroup$
– Ryan Goulden
Mar 21 at 5:51
$begingroup$
@SujitBhattacharyya that's the sum for the alternating harmonic series, this isn't quite that.
$endgroup$
– Ryan Goulden
Mar 21 at 5:52