Izvorul Negru River (Uz) References Maps Navigation menu46°21′18″N 26°26′39″E / 46.3549°N 26.4441°E / 46.3549; 26.444146°21′18″N 26°26′39″E / 46.3549°N 26.4441°E / 46.3549; 26.4441"Economic Mechanism in Water Management"the originalexpanding ite

Rivers of RomaniaTrotuș basinRivers of Bacău CountyBacău County river stubs


tributaryUzRomaniaDărmănești
















Izvorul Negru
Location
CountryRomania
CountiesBacău County
VillagesSălătruc
Physical characteristics
MouthUz
 - coordinates

46°21′18″N 26°26′39″E / 46.3549°N 26.4441°E / 46.3549; 26.4441Coordinates: 46°21′18″N 26°26′39″E / 46.3549°N 26.4441°E / 46.3549; 26.4441
Basin features
Progression
Uz→ Trotuș→ Siret→ Danube→ Black Sea

The Izvorul Negru is a right tributary of the river Uz in Romania.[1] It discharges into the Uz near Dărmănești.



References




  1. ^ Ovidiu Gabor - "Economic Mechanism in Water Management" (PDF). Archived from the original (PDF) on 5 March 2009. Retrieved 2009-03-05..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em, map page 10



  • Administrația Națională Apelor Române - Cadastrul Apelor - București

  • Institutul de Meteorologie și Hidrologie - Rîurile României - București 1971

  • Dărmănești - Bacău [1]

  • Trasee turistice - județul Bacău [2]


Maps


  • Harta Munții Nemira [3]




Popular posts from this blog

Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

Sum infinite sum for a complex variable not in the integers The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of the infinite product $prod_n = 1^infty fracz - alpha_nz - beta_n$Suppose $sum_k=-infty^inftya_kz^k$ and $sum_-infty^inftyb_kz^k$ converge to $1/sin(pi z)$. Find $b_k-a_k$.Laurent series of $ 1over (z - i) $Laurent series for $z^2 e^1/z$ at $z = infty$Write $sumlimits_n=0^infty e^-xn^3$ in the form $sumlimits_n=-infty^infty a_nx^n$Help needed on laurent series for a complex functionShow that $sum_-infty^infty (-1)^nexp(nz-frac12(n+frac12)^2omega)$ converges and is entireΑn entire function as an infinite sum of entire functionsClassify singularities in the extended complex planeFinding the laurent series around z = 0