Solving $f(yf(x)+x/y)=xyf(x^2+y^2)$ over the realsSolving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$Show that $fracxyz + fracxzy + fracyzx geq x+y+z $ by considering homogeneityGiven prime numbers $p,q$ and $r$, $p|qr − 1$, $q|rp − 1$, and $r|pq − 1$. What is the value of all possible $pqr$?Determining information in minimum trials (combinatorics problem)Determine all functions satisfying $fleft ( f(x)^2y right )=x^3f(xy)$Prove $sumlimits_textcycfracaa+(n-1)bgeq 1$Solving the functional equation $f(xf(x)+yf(y))=xy$ over positive realsProve that $(k^3)!$ is divisible by $(k!)^k^2 + k + 1$. Proof using properties of greatest integer function?Strange Examples of Involutory Functions?Funcional equation $f(xyf(x+y))=f(x)+f(y)$

Why is this clock signal connected to a capacitor to gnd?

Personal Teleportation: From Rags to Riches

Plagiarism or not?

Apex Framework / library for consuming REST services

What does the expression "A Mann!" means

Do UK voters know if their MP will be the Speaker of the House?

Is it inappropriate for a student to attend their mentor's dissertation defense?

I would say: "You are another teacher", but she is a woman and I am a man

Expand and Contract

How to prevent "they're falling in love" trope

Why no variance term in Bayesian logistic regression?

Can a virus destroy the BIOS of a modern computer?

How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)

How do I gain back my faith in my PhD degree?

Solving a recurrence relation (poker chips)

Is it acceptable for a professor to tell male students to not think that they are smarter than female students?

How writing a dominant 7 sus4 chord in RNA ( Vsus7 chord in the 1st inversion)

Is "remove commented out code" correct English?

Can I run a new neutral wire to repair a broken circuit?

Why is consensus so controversial in Britain?

Bullying boss launched a smear campaign and made me unemployable

Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?

Unable to supress ligatures in headings which are set in Caps

Unlock My Phone! February 2018



Solving $f(yf(x)+x/y)=xyf(x^2+y^2)$ over the reals


Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$Show that $fracxyz + fracxzy + fracyzx geq x+y+z $ by considering homogeneityGiven prime numbers $p,q$ and $r$, $p|qr − 1$, $q|rp − 1$, and $r|pq − 1$. What is the value of all possible $pqr$?Determining information in minimum trials (combinatorics problem)Determine all functions satisfying $fleft ( f(x)^2y right )=x^3f(xy)$Prove $sumlimits_textcycfracaa+(n-1)bgeq 1$Solving the functional equation $f(xf(x)+yf(y))=xy$ over positive realsProve that $(k^3)!$ is divisible by $(k!)^k^2 + k + 1$. Proof using properties of greatest integer function?Strange Examples of Involutory Functions?Funcional equation $f(xyf(x+y))=f(x)+f(y)$













19












$begingroup$



Find all functions $f:mathbbRto mathbbR$ such that $f(1)=1$ and for all real numbers $x$ and $y$ with $y neq 0$, $$fBigg (yf(x)+fracxyBigg)=xyf(x^2+y^2)$$




This seems quite hard. $f(x)=begincasesfrac1x, xneq 0 \ 0, x=0 endcases$ works by inspection, as does $f(x)=0$ (though I'm not sure if this is legitimate. If we set $y=1$, we have $f(f(x)+x)=xf(x^2+1)$. If we set $x=1$, we have $f(fracy^2+1y)=yf(y^2+1)$. which seems to imply $f(f(x)+x)=f(fracx^2+1x)$. If I could show that $f$ is injective I could go further, but I'm stuck - subbing in other values doesn't really seem to lead anywhere either.



I believe this problem came from an Olympiad camp.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are you sure it is $yneq 1$ and not $yneq 0$?
    $endgroup$
    – Redundant Aunt
    Mar 21 at 11:55










  • $begingroup$
    @RedundantAunt should be $yneq 0$ - fixed, thanks!
    $endgroup$
    – user574848
    Mar 21 at 11:59










  • $begingroup$
    The problem seems really hard to me! Are you sure that it has a nice solution or might there exist pathological solutions to this functional equation?
    $endgroup$
    – Redundant Aunt
    Mar 26 at 8:12










  • $begingroup$
    @RedundantAunt this question was shared to me - unfortunately, I can’t solve it either! (Hence why I’m asking)
    $endgroup$
    – user574848
    Mar 26 at 11:35







  • 3




    $begingroup$
    This is a duplicate of Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$, and AOPS links artofproblemsolving.com/community/c6h411400p2923354 , artofproblemsolving.com/community/c6h148711 and artofproblemsolving.com/community/c6h358223. And the original source maa.org/sites/default/files/pdf/AMC/a-activities/a6-mosp/… (Problem 7.4)
    $endgroup$
    – Sil
    Mar 31 at 11:10















19












$begingroup$



Find all functions $f:mathbbRto mathbbR$ such that $f(1)=1$ and for all real numbers $x$ and $y$ with $y neq 0$, $$fBigg (yf(x)+fracxyBigg)=xyf(x^2+y^2)$$




This seems quite hard. $f(x)=begincasesfrac1x, xneq 0 \ 0, x=0 endcases$ works by inspection, as does $f(x)=0$ (though I'm not sure if this is legitimate. If we set $y=1$, we have $f(f(x)+x)=xf(x^2+1)$. If we set $x=1$, we have $f(fracy^2+1y)=yf(y^2+1)$. which seems to imply $f(f(x)+x)=f(fracx^2+1x)$. If I could show that $f$ is injective I could go further, but I'm stuck - subbing in other values doesn't really seem to lead anywhere either.



I believe this problem came from an Olympiad camp.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are you sure it is $yneq 1$ and not $yneq 0$?
    $endgroup$
    – Redundant Aunt
    Mar 21 at 11:55










  • $begingroup$
    @RedundantAunt should be $yneq 0$ - fixed, thanks!
    $endgroup$
    – user574848
    Mar 21 at 11:59










  • $begingroup$
    The problem seems really hard to me! Are you sure that it has a nice solution or might there exist pathological solutions to this functional equation?
    $endgroup$
    – Redundant Aunt
    Mar 26 at 8:12










  • $begingroup$
    @RedundantAunt this question was shared to me - unfortunately, I can’t solve it either! (Hence why I’m asking)
    $endgroup$
    – user574848
    Mar 26 at 11:35







  • 3




    $begingroup$
    This is a duplicate of Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$, and AOPS links artofproblemsolving.com/community/c6h411400p2923354 , artofproblemsolving.com/community/c6h148711 and artofproblemsolving.com/community/c6h358223. And the original source maa.org/sites/default/files/pdf/AMC/a-activities/a6-mosp/… (Problem 7.4)
    $endgroup$
    – Sil
    Mar 31 at 11:10













19












19








19


4



$begingroup$



Find all functions $f:mathbbRto mathbbR$ such that $f(1)=1$ and for all real numbers $x$ and $y$ with $y neq 0$, $$fBigg (yf(x)+fracxyBigg)=xyf(x^2+y^2)$$




This seems quite hard. $f(x)=begincasesfrac1x, xneq 0 \ 0, x=0 endcases$ works by inspection, as does $f(x)=0$ (though I'm not sure if this is legitimate. If we set $y=1$, we have $f(f(x)+x)=xf(x^2+1)$. If we set $x=1$, we have $f(fracy^2+1y)=yf(y^2+1)$. which seems to imply $f(f(x)+x)=f(fracx^2+1x)$. If I could show that $f$ is injective I could go further, but I'm stuck - subbing in other values doesn't really seem to lead anywhere either.



I believe this problem came from an Olympiad camp.










share|cite|improve this question











$endgroup$





Find all functions $f:mathbbRto mathbbR$ such that $f(1)=1$ and for all real numbers $x$ and $y$ with $y neq 0$, $$fBigg (yf(x)+fracxyBigg)=xyf(x^2+y^2)$$




This seems quite hard. $f(x)=begincasesfrac1x, xneq 0 \ 0, x=0 endcases$ works by inspection, as does $f(x)=0$ (though I'm not sure if this is legitimate. If we set $y=1$, we have $f(f(x)+x)=xf(x^2+1)$. If we set $x=1$, we have $f(fracy^2+1y)=yf(y^2+1)$. which seems to imply $f(f(x)+x)=f(fracx^2+1x)$. If I could show that $f$ is injective I could go further, but I'm stuck - subbing in other values doesn't really seem to lead anywhere either.



I believe this problem came from an Olympiad camp.







contest-math functional-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 31 at 7:14









Eric Wofsey

192k14217350




192k14217350










asked Mar 21 at 5:25









user574848user574848

688118




688118











  • $begingroup$
    Are you sure it is $yneq 1$ and not $yneq 0$?
    $endgroup$
    – Redundant Aunt
    Mar 21 at 11:55










  • $begingroup$
    @RedundantAunt should be $yneq 0$ - fixed, thanks!
    $endgroup$
    – user574848
    Mar 21 at 11:59










  • $begingroup$
    The problem seems really hard to me! Are you sure that it has a nice solution or might there exist pathological solutions to this functional equation?
    $endgroup$
    – Redundant Aunt
    Mar 26 at 8:12










  • $begingroup$
    @RedundantAunt this question was shared to me - unfortunately, I can’t solve it either! (Hence why I’m asking)
    $endgroup$
    – user574848
    Mar 26 at 11:35







  • 3




    $begingroup$
    This is a duplicate of Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$, and AOPS links artofproblemsolving.com/community/c6h411400p2923354 , artofproblemsolving.com/community/c6h148711 and artofproblemsolving.com/community/c6h358223. And the original source maa.org/sites/default/files/pdf/AMC/a-activities/a6-mosp/… (Problem 7.4)
    $endgroup$
    – Sil
    Mar 31 at 11:10
















  • $begingroup$
    Are you sure it is $yneq 1$ and not $yneq 0$?
    $endgroup$
    – Redundant Aunt
    Mar 21 at 11:55










  • $begingroup$
    @RedundantAunt should be $yneq 0$ - fixed, thanks!
    $endgroup$
    – user574848
    Mar 21 at 11:59










  • $begingroup$
    The problem seems really hard to me! Are you sure that it has a nice solution or might there exist pathological solutions to this functional equation?
    $endgroup$
    – Redundant Aunt
    Mar 26 at 8:12










  • $begingroup$
    @RedundantAunt this question was shared to me - unfortunately, I can’t solve it either! (Hence why I’m asking)
    $endgroup$
    – user574848
    Mar 26 at 11:35







  • 3




    $begingroup$
    This is a duplicate of Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$, and AOPS links artofproblemsolving.com/community/c6h411400p2923354 , artofproblemsolving.com/community/c6h148711 and artofproblemsolving.com/community/c6h358223. And the original source maa.org/sites/default/files/pdf/AMC/a-activities/a6-mosp/… (Problem 7.4)
    $endgroup$
    – Sil
    Mar 31 at 11:10















$begingroup$
Are you sure it is $yneq 1$ and not $yneq 0$?
$endgroup$
– Redundant Aunt
Mar 21 at 11:55




$begingroup$
Are you sure it is $yneq 1$ and not $yneq 0$?
$endgroup$
– Redundant Aunt
Mar 21 at 11:55












$begingroup$
@RedundantAunt should be $yneq 0$ - fixed, thanks!
$endgroup$
– user574848
Mar 21 at 11:59




$begingroup$
@RedundantAunt should be $yneq 0$ - fixed, thanks!
$endgroup$
– user574848
Mar 21 at 11:59












$begingroup$
The problem seems really hard to me! Are you sure that it has a nice solution or might there exist pathological solutions to this functional equation?
$endgroup$
– Redundant Aunt
Mar 26 at 8:12




$begingroup$
The problem seems really hard to me! Are you sure that it has a nice solution or might there exist pathological solutions to this functional equation?
$endgroup$
– Redundant Aunt
Mar 26 at 8:12












$begingroup$
@RedundantAunt this question was shared to me - unfortunately, I can’t solve it either! (Hence why I’m asking)
$endgroup$
– user574848
Mar 26 at 11:35





$begingroup$
@RedundantAunt this question was shared to me - unfortunately, I can’t solve it either! (Hence why I’m asking)
$endgroup$
– user574848
Mar 26 at 11:35





3




3




$begingroup$
This is a duplicate of Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$, and AOPS links artofproblemsolving.com/community/c6h411400p2923354 , artofproblemsolving.com/community/c6h148711 and artofproblemsolving.com/community/c6h358223. And the original source maa.org/sites/default/files/pdf/AMC/a-activities/a6-mosp/… (Problem 7.4)
$endgroup$
– Sil
Mar 31 at 11:10




$begingroup$
This is a duplicate of Solving for the implicit function $fleft(f(x)y+fracxyright)=xyfleft(x^2+y^2right)$ and $f(1)=1$, and AOPS links artofproblemsolving.com/community/c6h411400p2923354 , artofproblemsolving.com/community/c6h148711 and artofproblemsolving.com/community/c6h358223. And the original source maa.org/sites/default/files/pdf/AMC/a-activities/a6-mosp/… (Problem 7.4)
$endgroup$
– Sil
Mar 31 at 11:10










4 Answers
4






active

oldest

votes


















4












$begingroup$

Here is one approach,



the equation $y f(x)+ fracxy=x^2 + y^2$ for $x neq 0$ does have at least one real root, since the equation is equivalent to a cubic equation. Denote this root by $lambda$.



inputting $lambda$ into the equation we find $f(x^2+y^2)=x lambda f(x^2+y^2)$. Now, notice that $x^2+y^2 neq 0$, if you can show that for some $sigma$ that $f(sigma)=0, iff sigma =0$ then the result folllows since, then $lambda = frac1x$ and form the initial functional equation you would obtain $f(x)lambda + fracxlambda=x^2+lambda^2, implies f(x)=frac1x$



Thus, the solution to the problem is found by asserting that you can prove that




$f(sigma)=0 , iff sigma = 0$




The road to glory I belive requires analysis of the following relation




$f(f(x)+x) = xf(x^2+1)$




Allows us to show that for $x neq 0$ then $f(x)=0 implies f(x^2+1)=0$ which implies $exists,$ a sequence $S_n to infty$ such that $f(S_n)=0$. For the following, assume $f$ is continuous.



Now, take $x^2+y^2=S_n$, the initial relation implies that
$$fleft(f(x)y+ fracxyright)=0, forall ,x^2+y^2=S_n$$



Now, for $y to 0^+$ and $x>0$ one finds that $f(x)y+fracxy to infty$ as $x to sqrtS_n$, thus $f$ takes zero values in the neighbourhood of $infty$.



Since $f(y+frac1y) = y f(1+y^2), implies f(x)=-f(-x), forall, |x| geq 2$ we find the same result in the neighbourhood of $- infty$. Notice now that for $y>1$ that $y+frac1y > 1+y^2$ one can translate the zeroes in the neighbourhood of $infty$ until you reach $2$. So that




$f(x)=0$ on $(-infty, -2], cup , [2, infty)$




Not sure where else to go from here, but this may provide a useful aid to a full solution.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Summary: This solution shows that if a function $f:mathbbRtomathbbR$ satisfies $f(1)=1$ and $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$ for all $x,yinmathbbR,yneq0$, then $f(0)=0$ and $f(x)=frac1x$ for all $xneq0$. No additional assumptions on $f$ are necessary!



    Thanks @Sil for giving all these references! I meanwhile came up with a solution myself, and last but not least because not many solutions of this problem seem to be around, I would like to share mine.



    Suppose $f$ is a solution to this functional equation and for $x,yinmathbbR, yneq0$ write $P(x,y)$ for the assertion $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$. Furthermore, we define $mathcalN:=x>0 $, and assume that $mathcalNneqemptyset$.



    As @Kevin already pointed out, we have $alphainmathcalNimpliesalpha^2+1inmathcalN$, and in particular $mathcalN$ is unbounded. Furthermore, $P(1,alpha)$ gives also $alphainmathcalNimpliesalpha+frac1alphainmathcalN$. Now, if $alpha,betainmathcalN$ then
    $$
    P(alpha,beta):quad fleft(fracalphabetaright)=alphabeta fleft(alpha^2+beta^2right)\
    P(beta,alpha):quad fleft(fracbetaalpharight)=betaalpha fleft(beta^2+alpha^2right)
    $$

    and thus $fleft(fracalphabetaright)=fleft(fracbetaalpharight)$. Therefore, if $alphainmathcalN$ then
    $$
    fleft(frac1alpharight)=fleft(fracalpha+frac1alphaalpha^2+1right)=fleft(fracalpha^2+1alpha+frac1alpharight)=f(alpha)=0
    $$

    and thus also $frac1alphainmathcalN$. This gives, together with the unboundedness of $mathcalN$, the existence of $(alpha_n)_ninmathbbNinmathcalN^mathbbN$ with $lim_ntoinftyalpha_n=0$.



    Now notice that for $xneq 0$ and $alphainmathcalN$
    $$
    P(alpha,alpha^2 x):quad fleft(frac1alpha xright)=alpha^3 x fleft(alpha^4left(x^2+frac1alpha^2right)right)\
    P(frac1alpha, x):quad fleft(frac1alpha xright)=fracxalpha fleft(x^2+frac1alpha^2right)
    $$

    and thus $alpha^4 fleft(alpha^4left(x^2+frac1alpha^2right)right)=fleft(x^2+frac1alpha^2right)$ for all $xneq 0$, or in more simple terms
    $$
    (*)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>frac1alpha^2
    $$

    Now for a fixed $alphainmathcalN$ and $y>0$ let $ninmathbbN$ be such that $y>maxfracalpha_n^2alpha^4,fracalpha_n^4alpha^2,alpha_n^2$, which exists as $(alpha_n)to 0$. Then
    $$
    alpha^4 f(alpha^4 y)=fracalpha^4alpha_n^4 alpha_n^4 fleft(alpha_n^4fracalpha^4 yalpha_n^4right)oversetfracalpha^4 yalpha_n^4>frac1alpha_n^2=frac1alpha_n^4alpha^4 fleft(alpha^4fracyalpha_n^4right)oversetfracyalpha_n^4>frac1alpha^2=frac1alpha_n^4fleft(fracyalpha_n^4right)oversety>alpha_n^2=f(y).
    $$

    Thus we can strengthen $(*)$ and actually have
    $$
    (**)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>0.
    $$

    In particular, for $z=frac1alpha^2$ we get $alpha^4f(alpha^2)=fleft(frac1alpha^2right)$. On the other hand, we see that as $1+alpha^2,1+frac1alpha^2inmathcalN$, we have by again combining $P(1+alpha^2,1+frac1alpha^2)$ and $P(1+frac1alpha^2,1+alpha^2)$ that
    $$
    f(alpha^2)=fleft(frac1+alpha^21+frac1alpha^2right)=fleft(frac1+frac1alpha^21+alpha^2right)=fleft(frac1alpha^2right)
    $$

    and thus, as $alpha>0$ and $alphaneq 1$, we have $alpha^4f(alpha^2)=fleft(frac1alpha^2right)=f(alpha^2)implies f(alpha^2)=0$ so $alpha^2inmathcalN$. But then also $alpha^4inmathcalN$ which gives by $(**)$
    $$
    0=alpha^4 f(alpha^4)overset(**)= f(1)=1,
    $$

    contradiction!



    Therefore we conclude that $mathcalN$ is empty, and as @Kevin already saw this gives $f(x)=frac1x$ for all $xneq 0$. As $P(0,y)$ gives $f(0)=0$, we have uniquely determined $f$, and we can verify easily that $f$ is indeed a solution of the equation at hand.






    share|cite|improve this answer











    $endgroup$




















      0












      $begingroup$

      $colorbrowntextbfSome forms of the equation.$



      If $underlinexnot=0,$ then unknowns can be swapped. So
      $$fleft(yf(x)+dfrac xyright) = xyf(x^2+y^2) = fleft(xf(y)+dfrac yxright),tag1$$
      with the partial cases
      $$begincases
      y=1,quad f(f(x)+x) = xf(x^2+1) = fleft(x+dfrac1xright) hspace226mu(2.1)\[4pt]
      y=x,quad f(xf(x)+1) = x^2f(2x^2) hspace350mu(2.2)\[4pt]
      endcases$$

      Denote
      $$g(x) = xf(x)tag3,$$
      then from $(2)$ should
      $$begincases
      g(1+x^2) = gleft(x+dfrac1xright) hspace432mu(4.1)\[4pt]
      g(g(x)+1) = frac12g(2x^2)(g(x)+1)hspace370mu(4.2)\[4pt]
      endcases$$

      Assume $g(x)$ continuous function.



      $colorbrowntextbfCorollaries from the formula (4.1).$



      Using the relationships between the arguments in $(4.1)$ in the form of
      begincases
      L_1,2=1+x^2=dfrac 12R(RpmsqrtR^2-4)\[4pt]
      R_1,2=x+dfrac1x = pmleft(sqrt L-1+dfrac1sqrtL-1right),
      endcases

      one can present equation $(4.1)$ in the forms of
      begincases
      g(x) = gleft(dfrac 12x(xpmsqrtx^2-4)right)hspace382mu(5.1)\[4pt]
      g(x) = gleft(pmleft(sqrtx-1 + dfrac1sqrtx-1right)right).hspace330mu(5.2)
      endcases

      From $(5.2)$ should $g(1)=g(pminfty),$
      $$g(pminfty)=1.$$
      Also, formula $(5.2)$ allows to assign to each point of the interval $(1,2)$ the point of the interval $(2,infty)$ with the same value of the function $g.$



      At the same time, repeated recursive application of formula $(5.1)$ allows to prove that
      $$g(x)=1quad forall quad xin((-infty,-2]cup[2,infty)).tag6$$



      $colorbrowntextbfCorollaries from the formula (4.2).$



      Let us consider such neighbour of the point $x=1,$ where $g(x)>0.$
      Then the right part of the system $(4.2)$ can be presented in the form of
      $$g(2x^2)(1+g(x)) = 2.tag7$$
      Applying $(7)$ for $x$ from $1$ to $+0$ and from $-2$ to $-0,$ easy to see that
      $g(x)=1.tag8$



      The value in the singular point $x=0$ can be defined immediately from the equaion $(1)$ and equals to zero.



      Theerefore, the OP solution
      $$f(x) =
      begincases
      0,quadtextifquad x=0\[4pt]
      dfrac1x,quadtextotherwize
      endcases$$

      is the single non-trivial solution.






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        How do you conclude that $f(-y)=f(y)$ from $(1)$?
        $endgroup$
        – Servaes
        Mar 29 at 21:49










      • $begingroup$
        Also, how do you account for the solution $f=0$?
        $endgroup$
        – Servaes
        Mar 29 at 21:54










      • $begingroup$
        In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
        $endgroup$
        – Servaes
        Mar 29 at 22:00










      • $begingroup$
        Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
        $endgroup$
        – Servaes
        Mar 29 at 22:06











      • $begingroup$
        @Servaes Thanks! Fixed all.
        $endgroup$
        – Yuri Negometyanov
        2 days ago


















      0












      $begingroup$

      Let $f:textbfRrightarrowtextbfR$, such that $f(1)=1$ and
      $$
      fleft(yf(x)+fracxyright)=xyf(x^2+y^2)textrm, forall (x,y)intextbfRtimestextbfR^*tag 1
      $$

      Set $x=0$, $y=1$ in (1), then easily $f(0)=0$ (the case $f(0)neq 0$ is trivial). For $y=1$ in (1) we get
      $$
      xf(x^2+1)=f(f(x)+x)textrm, xneq 0.tag 2
      $$

      Also using the symmetry we get
      $$
      fleft(yf(x)+fracxyright)=fleft(xf(y)+fracyxright)textrm, x,yneq 0
      $$

      For $y=1$, we get
      $$
      fleft(x+frac1xright)=f(f(x)+x)textrm, xneq 0tag 3
      $$

      Assume that $h(x,y)$ is a surface (function) such that
      $$
      f(y+h(x,y))=f(x).tag 4
      $$

      Note.



      One choise of $h(x,y)$ is $h(x,y)=-y+x$ but may be there others. For example if $f(x)=x^2-x+1$, then $h(x,y)=x-y$ or $h(x,y)=1-x-y$.



      We assume here that
      $$
      f(x)=hleft(x+frac1x,xright)tag4.1
      $$


      From (4) with $xrightarrow x+frac1x$ we get
      $$
      fleft(x+frac1xright)=fleft(y+hleft(x+frac1x,yright)right).
      $$

      Hence for $y=x$ in the above identity we get
      $$
      fleft(x+frac1xright)=fleft(x+hleft(x+frac1x,xright)right)=f(x+f(x))
      $$

      Hence we can get (3). From (2) and (3) we get also
      $$
      xf(x^2+1)=fleft(x+frac1xright)tag 6
      $$

      Setting $xrightarrow x^-1$ in (6)
      $$
      frac1xfleft(1+frac1x^2right)=fleft(x+frac1xright)=xf(x^2+1).tag 7
      $$

      Hence if we set $x^2rightarrow x>0$ in (7), then
      $$
      fleft(1+frac1xright)=xf(x+1)textrm, for all x>0.tag 8
      $$

      Set also $x=y-1>0$ in (8), then
      $$
      fleft(fracyy-1right)=(y-1)f(y)textrm, y>1.
      $$

      With $y=1/w>1$ we get
      $$
      frac11-wfleft(frac11-wright)=frac1wfleft(frac1wright).
      $$

      Hence if $0<w<1$ and $g(w):=frac1wfleft(frac1wright)$, then
      $$
      f(x)=x^-1gleft(x^-1right)textrm, where x>1textrm and g(1-w)=g(w)textrm, 0<w<1tag 9
      $$

      The solution (9) satisfies (8),(7),(6), but for to holds (3) we get plus a new functional equation for $f(x)$ and this is (4.1).



      Hence the general solution is
      $$
      f(x)=hleft(x+frac1x,xright)tag11
      $$

      with
      $$
      frac1x-1hleft(x-1+frac1x-1,frac1x-1right)=frac1xhleft(x+frac1x,frac1xright)tag12
      $$

      and $h(x,y)$ solution of
      $$
      f(y+h(x,y))=f(x).tag13
      $$

      An obvious solution of $(13)$ is $h(x,y)=x-y$, but it may exist and other solutions.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156382%2fsolving-fyfxx-y-xyfx2y2-over-the-reals%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Here is one approach,



        the equation $y f(x)+ fracxy=x^2 + y^2$ for $x neq 0$ does have at least one real root, since the equation is equivalent to a cubic equation. Denote this root by $lambda$.



        inputting $lambda$ into the equation we find $f(x^2+y^2)=x lambda f(x^2+y^2)$. Now, notice that $x^2+y^2 neq 0$, if you can show that for some $sigma$ that $f(sigma)=0, iff sigma =0$ then the result folllows since, then $lambda = frac1x$ and form the initial functional equation you would obtain $f(x)lambda + fracxlambda=x^2+lambda^2, implies f(x)=frac1x$



        Thus, the solution to the problem is found by asserting that you can prove that




        $f(sigma)=0 , iff sigma = 0$




        The road to glory I belive requires analysis of the following relation




        $f(f(x)+x) = xf(x^2+1)$




        Allows us to show that for $x neq 0$ then $f(x)=0 implies f(x^2+1)=0$ which implies $exists,$ a sequence $S_n to infty$ such that $f(S_n)=0$. For the following, assume $f$ is continuous.



        Now, take $x^2+y^2=S_n$, the initial relation implies that
        $$fleft(f(x)y+ fracxyright)=0, forall ,x^2+y^2=S_n$$



        Now, for $y to 0^+$ and $x>0$ one finds that $f(x)y+fracxy to infty$ as $x to sqrtS_n$, thus $f$ takes zero values in the neighbourhood of $infty$.



        Since $f(y+frac1y) = y f(1+y^2), implies f(x)=-f(-x), forall, |x| geq 2$ we find the same result in the neighbourhood of $- infty$. Notice now that for $y>1$ that $y+frac1y > 1+y^2$ one can translate the zeroes in the neighbourhood of $infty$ until you reach $2$. So that




        $f(x)=0$ on $(-infty, -2], cup , [2, infty)$




        Not sure where else to go from here, but this may provide a useful aid to a full solution.






        share|cite|improve this answer









        $endgroup$

















          4












          $begingroup$

          Here is one approach,



          the equation $y f(x)+ fracxy=x^2 + y^2$ for $x neq 0$ does have at least one real root, since the equation is equivalent to a cubic equation. Denote this root by $lambda$.



          inputting $lambda$ into the equation we find $f(x^2+y^2)=x lambda f(x^2+y^2)$. Now, notice that $x^2+y^2 neq 0$, if you can show that for some $sigma$ that $f(sigma)=0, iff sigma =0$ then the result folllows since, then $lambda = frac1x$ and form the initial functional equation you would obtain $f(x)lambda + fracxlambda=x^2+lambda^2, implies f(x)=frac1x$



          Thus, the solution to the problem is found by asserting that you can prove that




          $f(sigma)=0 , iff sigma = 0$




          The road to glory I belive requires analysis of the following relation




          $f(f(x)+x) = xf(x^2+1)$




          Allows us to show that for $x neq 0$ then $f(x)=0 implies f(x^2+1)=0$ which implies $exists,$ a sequence $S_n to infty$ such that $f(S_n)=0$. For the following, assume $f$ is continuous.



          Now, take $x^2+y^2=S_n$, the initial relation implies that
          $$fleft(f(x)y+ fracxyright)=0, forall ,x^2+y^2=S_n$$



          Now, for $y to 0^+$ and $x>0$ one finds that $f(x)y+fracxy to infty$ as $x to sqrtS_n$, thus $f$ takes zero values in the neighbourhood of $infty$.



          Since $f(y+frac1y) = y f(1+y^2), implies f(x)=-f(-x), forall, |x| geq 2$ we find the same result in the neighbourhood of $- infty$. Notice now that for $y>1$ that $y+frac1y > 1+y^2$ one can translate the zeroes in the neighbourhood of $infty$ until you reach $2$. So that




          $f(x)=0$ on $(-infty, -2], cup , [2, infty)$




          Not sure where else to go from here, but this may provide a useful aid to a full solution.






          share|cite|improve this answer









          $endgroup$















            4












            4








            4





            $begingroup$

            Here is one approach,



            the equation $y f(x)+ fracxy=x^2 + y^2$ for $x neq 0$ does have at least one real root, since the equation is equivalent to a cubic equation. Denote this root by $lambda$.



            inputting $lambda$ into the equation we find $f(x^2+y^2)=x lambda f(x^2+y^2)$. Now, notice that $x^2+y^2 neq 0$, if you can show that for some $sigma$ that $f(sigma)=0, iff sigma =0$ then the result folllows since, then $lambda = frac1x$ and form the initial functional equation you would obtain $f(x)lambda + fracxlambda=x^2+lambda^2, implies f(x)=frac1x$



            Thus, the solution to the problem is found by asserting that you can prove that




            $f(sigma)=0 , iff sigma = 0$




            The road to glory I belive requires analysis of the following relation




            $f(f(x)+x) = xf(x^2+1)$




            Allows us to show that for $x neq 0$ then $f(x)=0 implies f(x^2+1)=0$ which implies $exists,$ a sequence $S_n to infty$ such that $f(S_n)=0$. For the following, assume $f$ is continuous.



            Now, take $x^2+y^2=S_n$, the initial relation implies that
            $$fleft(f(x)y+ fracxyright)=0, forall ,x^2+y^2=S_n$$



            Now, for $y to 0^+$ and $x>0$ one finds that $f(x)y+fracxy to infty$ as $x to sqrtS_n$, thus $f$ takes zero values in the neighbourhood of $infty$.



            Since $f(y+frac1y) = y f(1+y^2), implies f(x)=-f(-x), forall, |x| geq 2$ we find the same result in the neighbourhood of $- infty$. Notice now that for $y>1$ that $y+frac1y > 1+y^2$ one can translate the zeroes in the neighbourhood of $infty$ until you reach $2$. So that




            $f(x)=0$ on $(-infty, -2], cup , [2, infty)$




            Not sure where else to go from here, but this may provide a useful aid to a full solution.






            share|cite|improve this answer









            $endgroup$



            Here is one approach,



            the equation $y f(x)+ fracxy=x^2 + y^2$ for $x neq 0$ does have at least one real root, since the equation is equivalent to a cubic equation. Denote this root by $lambda$.



            inputting $lambda$ into the equation we find $f(x^2+y^2)=x lambda f(x^2+y^2)$. Now, notice that $x^2+y^2 neq 0$, if you can show that for some $sigma$ that $f(sigma)=0, iff sigma =0$ then the result folllows since, then $lambda = frac1x$ and form the initial functional equation you would obtain $f(x)lambda + fracxlambda=x^2+lambda^2, implies f(x)=frac1x$



            Thus, the solution to the problem is found by asserting that you can prove that




            $f(sigma)=0 , iff sigma = 0$




            The road to glory I belive requires analysis of the following relation




            $f(f(x)+x) = xf(x^2+1)$




            Allows us to show that for $x neq 0$ then $f(x)=0 implies f(x^2+1)=0$ which implies $exists,$ a sequence $S_n to infty$ such that $f(S_n)=0$. For the following, assume $f$ is continuous.



            Now, take $x^2+y^2=S_n$, the initial relation implies that
            $$fleft(f(x)y+ fracxyright)=0, forall ,x^2+y^2=S_n$$



            Now, for $y to 0^+$ and $x>0$ one finds that $f(x)y+fracxy to infty$ as $x to sqrtS_n$, thus $f$ takes zero values in the neighbourhood of $infty$.



            Since $f(y+frac1y) = y f(1+y^2), implies f(x)=-f(-x), forall, |x| geq 2$ we find the same result in the neighbourhood of $- infty$. Notice now that for $y>1$ that $y+frac1y > 1+y^2$ one can translate the zeroes in the neighbourhood of $infty$ until you reach $2$. So that




            $f(x)=0$ on $(-infty, -2], cup , [2, infty)$




            Not sure where else to go from here, but this may provide a useful aid to a full solution.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 21 at 12:40









            KevinKevin

            5,736823




            5,736823





















                2












                $begingroup$

                Summary: This solution shows that if a function $f:mathbbRtomathbbR$ satisfies $f(1)=1$ and $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$ for all $x,yinmathbbR,yneq0$, then $f(0)=0$ and $f(x)=frac1x$ for all $xneq0$. No additional assumptions on $f$ are necessary!



                Thanks @Sil for giving all these references! I meanwhile came up with a solution myself, and last but not least because not many solutions of this problem seem to be around, I would like to share mine.



                Suppose $f$ is a solution to this functional equation and for $x,yinmathbbR, yneq0$ write $P(x,y)$ for the assertion $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$. Furthermore, we define $mathcalN:=x>0 $, and assume that $mathcalNneqemptyset$.



                As @Kevin already pointed out, we have $alphainmathcalNimpliesalpha^2+1inmathcalN$, and in particular $mathcalN$ is unbounded. Furthermore, $P(1,alpha)$ gives also $alphainmathcalNimpliesalpha+frac1alphainmathcalN$. Now, if $alpha,betainmathcalN$ then
                $$
                P(alpha,beta):quad fleft(fracalphabetaright)=alphabeta fleft(alpha^2+beta^2right)\
                P(beta,alpha):quad fleft(fracbetaalpharight)=betaalpha fleft(beta^2+alpha^2right)
                $$

                and thus $fleft(fracalphabetaright)=fleft(fracbetaalpharight)$. Therefore, if $alphainmathcalN$ then
                $$
                fleft(frac1alpharight)=fleft(fracalpha+frac1alphaalpha^2+1right)=fleft(fracalpha^2+1alpha+frac1alpharight)=f(alpha)=0
                $$

                and thus also $frac1alphainmathcalN$. This gives, together with the unboundedness of $mathcalN$, the existence of $(alpha_n)_ninmathbbNinmathcalN^mathbbN$ with $lim_ntoinftyalpha_n=0$.



                Now notice that for $xneq 0$ and $alphainmathcalN$
                $$
                P(alpha,alpha^2 x):quad fleft(frac1alpha xright)=alpha^3 x fleft(alpha^4left(x^2+frac1alpha^2right)right)\
                P(frac1alpha, x):quad fleft(frac1alpha xright)=fracxalpha fleft(x^2+frac1alpha^2right)
                $$

                and thus $alpha^4 fleft(alpha^4left(x^2+frac1alpha^2right)right)=fleft(x^2+frac1alpha^2right)$ for all $xneq 0$, or in more simple terms
                $$
                (*)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>frac1alpha^2
                $$

                Now for a fixed $alphainmathcalN$ and $y>0$ let $ninmathbbN$ be such that $y>maxfracalpha_n^2alpha^4,fracalpha_n^4alpha^2,alpha_n^2$, which exists as $(alpha_n)to 0$. Then
                $$
                alpha^4 f(alpha^4 y)=fracalpha^4alpha_n^4 alpha_n^4 fleft(alpha_n^4fracalpha^4 yalpha_n^4right)oversetfracalpha^4 yalpha_n^4>frac1alpha_n^2=frac1alpha_n^4alpha^4 fleft(alpha^4fracyalpha_n^4right)oversetfracyalpha_n^4>frac1alpha^2=frac1alpha_n^4fleft(fracyalpha_n^4right)oversety>alpha_n^2=f(y).
                $$

                Thus we can strengthen $(*)$ and actually have
                $$
                (**)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>0.
                $$

                In particular, for $z=frac1alpha^2$ we get $alpha^4f(alpha^2)=fleft(frac1alpha^2right)$. On the other hand, we see that as $1+alpha^2,1+frac1alpha^2inmathcalN$, we have by again combining $P(1+alpha^2,1+frac1alpha^2)$ and $P(1+frac1alpha^2,1+alpha^2)$ that
                $$
                f(alpha^2)=fleft(frac1+alpha^21+frac1alpha^2right)=fleft(frac1+frac1alpha^21+alpha^2right)=fleft(frac1alpha^2right)
                $$

                and thus, as $alpha>0$ and $alphaneq 1$, we have $alpha^4f(alpha^2)=fleft(frac1alpha^2right)=f(alpha^2)implies f(alpha^2)=0$ so $alpha^2inmathcalN$. But then also $alpha^4inmathcalN$ which gives by $(**)$
                $$
                0=alpha^4 f(alpha^4)overset(**)= f(1)=1,
                $$

                contradiction!



                Therefore we conclude that $mathcalN$ is empty, and as @Kevin already saw this gives $f(x)=frac1x$ for all $xneq 0$. As $P(0,y)$ gives $f(0)=0$, we have uniquely determined $f$, and we can verify easily that $f$ is indeed a solution of the equation at hand.






                share|cite|improve this answer











                $endgroup$

















                  2












                  $begingroup$

                  Summary: This solution shows that if a function $f:mathbbRtomathbbR$ satisfies $f(1)=1$ and $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$ for all $x,yinmathbbR,yneq0$, then $f(0)=0$ and $f(x)=frac1x$ for all $xneq0$. No additional assumptions on $f$ are necessary!



                  Thanks @Sil for giving all these references! I meanwhile came up with a solution myself, and last but not least because not many solutions of this problem seem to be around, I would like to share mine.



                  Suppose $f$ is a solution to this functional equation and for $x,yinmathbbR, yneq0$ write $P(x,y)$ for the assertion $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$. Furthermore, we define $mathcalN:=x>0 $, and assume that $mathcalNneqemptyset$.



                  As @Kevin already pointed out, we have $alphainmathcalNimpliesalpha^2+1inmathcalN$, and in particular $mathcalN$ is unbounded. Furthermore, $P(1,alpha)$ gives also $alphainmathcalNimpliesalpha+frac1alphainmathcalN$. Now, if $alpha,betainmathcalN$ then
                  $$
                  P(alpha,beta):quad fleft(fracalphabetaright)=alphabeta fleft(alpha^2+beta^2right)\
                  P(beta,alpha):quad fleft(fracbetaalpharight)=betaalpha fleft(beta^2+alpha^2right)
                  $$

                  and thus $fleft(fracalphabetaright)=fleft(fracbetaalpharight)$. Therefore, if $alphainmathcalN$ then
                  $$
                  fleft(frac1alpharight)=fleft(fracalpha+frac1alphaalpha^2+1right)=fleft(fracalpha^2+1alpha+frac1alpharight)=f(alpha)=0
                  $$

                  and thus also $frac1alphainmathcalN$. This gives, together with the unboundedness of $mathcalN$, the existence of $(alpha_n)_ninmathbbNinmathcalN^mathbbN$ with $lim_ntoinftyalpha_n=0$.



                  Now notice that for $xneq 0$ and $alphainmathcalN$
                  $$
                  P(alpha,alpha^2 x):quad fleft(frac1alpha xright)=alpha^3 x fleft(alpha^4left(x^2+frac1alpha^2right)right)\
                  P(frac1alpha, x):quad fleft(frac1alpha xright)=fracxalpha fleft(x^2+frac1alpha^2right)
                  $$

                  and thus $alpha^4 fleft(alpha^4left(x^2+frac1alpha^2right)right)=fleft(x^2+frac1alpha^2right)$ for all $xneq 0$, or in more simple terms
                  $$
                  (*)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>frac1alpha^2
                  $$

                  Now for a fixed $alphainmathcalN$ and $y>0$ let $ninmathbbN$ be such that $y>maxfracalpha_n^2alpha^4,fracalpha_n^4alpha^2,alpha_n^2$, which exists as $(alpha_n)to 0$. Then
                  $$
                  alpha^4 f(alpha^4 y)=fracalpha^4alpha_n^4 alpha_n^4 fleft(alpha_n^4fracalpha^4 yalpha_n^4right)oversetfracalpha^4 yalpha_n^4>frac1alpha_n^2=frac1alpha_n^4alpha^4 fleft(alpha^4fracyalpha_n^4right)oversetfracyalpha_n^4>frac1alpha^2=frac1alpha_n^4fleft(fracyalpha_n^4right)oversety>alpha_n^2=f(y).
                  $$

                  Thus we can strengthen $(*)$ and actually have
                  $$
                  (**)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>0.
                  $$

                  In particular, for $z=frac1alpha^2$ we get $alpha^4f(alpha^2)=fleft(frac1alpha^2right)$. On the other hand, we see that as $1+alpha^2,1+frac1alpha^2inmathcalN$, we have by again combining $P(1+alpha^2,1+frac1alpha^2)$ and $P(1+frac1alpha^2,1+alpha^2)$ that
                  $$
                  f(alpha^2)=fleft(frac1+alpha^21+frac1alpha^2right)=fleft(frac1+frac1alpha^21+alpha^2right)=fleft(frac1alpha^2right)
                  $$

                  and thus, as $alpha>0$ and $alphaneq 1$, we have $alpha^4f(alpha^2)=fleft(frac1alpha^2right)=f(alpha^2)implies f(alpha^2)=0$ so $alpha^2inmathcalN$. But then also $alpha^4inmathcalN$ which gives by $(**)$
                  $$
                  0=alpha^4 f(alpha^4)overset(**)= f(1)=1,
                  $$

                  contradiction!



                  Therefore we conclude that $mathcalN$ is empty, and as @Kevin already saw this gives $f(x)=frac1x$ for all $xneq 0$. As $P(0,y)$ gives $f(0)=0$, we have uniquely determined $f$, and we can verify easily that $f$ is indeed a solution of the equation at hand.






                  share|cite|improve this answer











                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Summary: This solution shows that if a function $f:mathbbRtomathbbR$ satisfies $f(1)=1$ and $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$ for all $x,yinmathbbR,yneq0$, then $f(0)=0$ and $f(x)=frac1x$ for all $xneq0$. No additional assumptions on $f$ are necessary!



                    Thanks @Sil for giving all these references! I meanwhile came up with a solution myself, and last but not least because not many solutions of this problem seem to be around, I would like to share mine.



                    Suppose $f$ is a solution to this functional equation and for $x,yinmathbbR, yneq0$ write $P(x,y)$ for the assertion $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$. Furthermore, we define $mathcalN:=x>0 $, and assume that $mathcalNneqemptyset$.



                    As @Kevin already pointed out, we have $alphainmathcalNimpliesalpha^2+1inmathcalN$, and in particular $mathcalN$ is unbounded. Furthermore, $P(1,alpha)$ gives also $alphainmathcalNimpliesalpha+frac1alphainmathcalN$. Now, if $alpha,betainmathcalN$ then
                    $$
                    P(alpha,beta):quad fleft(fracalphabetaright)=alphabeta fleft(alpha^2+beta^2right)\
                    P(beta,alpha):quad fleft(fracbetaalpharight)=betaalpha fleft(beta^2+alpha^2right)
                    $$

                    and thus $fleft(fracalphabetaright)=fleft(fracbetaalpharight)$. Therefore, if $alphainmathcalN$ then
                    $$
                    fleft(frac1alpharight)=fleft(fracalpha+frac1alphaalpha^2+1right)=fleft(fracalpha^2+1alpha+frac1alpharight)=f(alpha)=0
                    $$

                    and thus also $frac1alphainmathcalN$. This gives, together with the unboundedness of $mathcalN$, the existence of $(alpha_n)_ninmathbbNinmathcalN^mathbbN$ with $lim_ntoinftyalpha_n=0$.



                    Now notice that for $xneq 0$ and $alphainmathcalN$
                    $$
                    P(alpha,alpha^2 x):quad fleft(frac1alpha xright)=alpha^3 x fleft(alpha^4left(x^2+frac1alpha^2right)right)\
                    P(frac1alpha, x):quad fleft(frac1alpha xright)=fracxalpha fleft(x^2+frac1alpha^2right)
                    $$

                    and thus $alpha^4 fleft(alpha^4left(x^2+frac1alpha^2right)right)=fleft(x^2+frac1alpha^2right)$ for all $xneq 0$, or in more simple terms
                    $$
                    (*)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>frac1alpha^2
                    $$

                    Now for a fixed $alphainmathcalN$ and $y>0$ let $ninmathbbN$ be such that $y>maxfracalpha_n^2alpha^4,fracalpha_n^4alpha^2,alpha_n^2$, which exists as $(alpha_n)to 0$. Then
                    $$
                    alpha^4 f(alpha^4 y)=fracalpha^4alpha_n^4 alpha_n^4 fleft(alpha_n^4fracalpha^4 yalpha_n^4right)oversetfracalpha^4 yalpha_n^4>frac1alpha_n^2=frac1alpha_n^4alpha^4 fleft(alpha^4fracyalpha_n^4right)oversetfracyalpha_n^4>frac1alpha^2=frac1alpha_n^4fleft(fracyalpha_n^4right)oversety>alpha_n^2=f(y).
                    $$

                    Thus we can strengthen $(*)$ and actually have
                    $$
                    (**)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>0.
                    $$

                    In particular, for $z=frac1alpha^2$ we get $alpha^4f(alpha^2)=fleft(frac1alpha^2right)$. On the other hand, we see that as $1+alpha^2,1+frac1alpha^2inmathcalN$, we have by again combining $P(1+alpha^2,1+frac1alpha^2)$ and $P(1+frac1alpha^2,1+alpha^2)$ that
                    $$
                    f(alpha^2)=fleft(frac1+alpha^21+frac1alpha^2right)=fleft(frac1+frac1alpha^21+alpha^2right)=fleft(frac1alpha^2right)
                    $$

                    and thus, as $alpha>0$ and $alphaneq 1$, we have $alpha^4f(alpha^2)=fleft(frac1alpha^2right)=f(alpha^2)implies f(alpha^2)=0$ so $alpha^2inmathcalN$. But then also $alpha^4inmathcalN$ which gives by $(**)$
                    $$
                    0=alpha^4 f(alpha^4)overset(**)= f(1)=1,
                    $$

                    contradiction!



                    Therefore we conclude that $mathcalN$ is empty, and as @Kevin already saw this gives $f(x)=frac1x$ for all $xneq 0$. As $P(0,y)$ gives $f(0)=0$, we have uniquely determined $f$, and we can verify easily that $f$ is indeed a solution of the equation at hand.






                    share|cite|improve this answer











                    $endgroup$



                    Summary: This solution shows that if a function $f:mathbbRtomathbbR$ satisfies $f(1)=1$ and $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$ for all $x,yinmathbbR,yneq0$, then $f(0)=0$ and $f(x)=frac1x$ for all $xneq0$. No additional assumptions on $f$ are necessary!



                    Thanks @Sil for giving all these references! I meanwhile came up with a solution myself, and last but not least because not many solutions of this problem seem to be around, I would like to share mine.



                    Suppose $f$ is a solution to this functional equation and for $x,yinmathbbR, yneq0$ write $P(x,y)$ for the assertion $fleft(yf(x)+fracxyright)=xyfleft(x^2+y^2right)$. Furthermore, we define $mathcalN:=x>0 $, and assume that $mathcalNneqemptyset$.



                    As @Kevin already pointed out, we have $alphainmathcalNimpliesalpha^2+1inmathcalN$, and in particular $mathcalN$ is unbounded. Furthermore, $P(1,alpha)$ gives also $alphainmathcalNimpliesalpha+frac1alphainmathcalN$. Now, if $alpha,betainmathcalN$ then
                    $$
                    P(alpha,beta):quad fleft(fracalphabetaright)=alphabeta fleft(alpha^2+beta^2right)\
                    P(beta,alpha):quad fleft(fracbetaalpharight)=betaalpha fleft(beta^2+alpha^2right)
                    $$

                    and thus $fleft(fracalphabetaright)=fleft(fracbetaalpharight)$. Therefore, if $alphainmathcalN$ then
                    $$
                    fleft(frac1alpharight)=fleft(fracalpha+frac1alphaalpha^2+1right)=fleft(fracalpha^2+1alpha+frac1alpharight)=f(alpha)=0
                    $$

                    and thus also $frac1alphainmathcalN$. This gives, together with the unboundedness of $mathcalN$, the existence of $(alpha_n)_ninmathbbNinmathcalN^mathbbN$ with $lim_ntoinftyalpha_n=0$.



                    Now notice that for $xneq 0$ and $alphainmathcalN$
                    $$
                    P(alpha,alpha^2 x):quad fleft(frac1alpha xright)=alpha^3 x fleft(alpha^4left(x^2+frac1alpha^2right)right)\
                    P(frac1alpha, x):quad fleft(frac1alpha xright)=fracxalpha fleft(x^2+frac1alpha^2right)
                    $$

                    and thus $alpha^4 fleft(alpha^4left(x^2+frac1alpha^2right)right)=fleft(x^2+frac1alpha^2right)$ for all $xneq 0$, or in more simple terms
                    $$
                    (*)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>frac1alpha^2
                    $$

                    Now for a fixed $alphainmathcalN$ and $y>0$ let $ninmathbbN$ be such that $y>maxfracalpha_n^2alpha^4,fracalpha_n^4alpha^2,alpha_n^2$, which exists as $(alpha_n)to 0$. Then
                    $$
                    alpha^4 f(alpha^4 y)=fracalpha^4alpha_n^4 alpha_n^4 fleft(alpha_n^4fracalpha^4 yalpha_n^4right)oversetfracalpha^4 yalpha_n^4>frac1alpha_n^2=frac1alpha_n^4alpha^4 fleft(alpha^4fracyalpha_n^4right)oversetfracyalpha_n^4>frac1alpha^2=frac1alpha_n^4fleft(fracyalpha_n^4right)oversety>alpha_n^2=f(y).
                    $$

                    Thus we can strengthen $(*)$ and actually have
                    $$
                    (**)qquadalpha^4 f(alpha^4 z) = f(z) quadforall alphainmathcalN, z>0.
                    $$

                    In particular, for $z=frac1alpha^2$ we get $alpha^4f(alpha^2)=fleft(frac1alpha^2right)$. On the other hand, we see that as $1+alpha^2,1+frac1alpha^2inmathcalN$, we have by again combining $P(1+alpha^2,1+frac1alpha^2)$ and $P(1+frac1alpha^2,1+alpha^2)$ that
                    $$
                    f(alpha^2)=fleft(frac1+alpha^21+frac1alpha^2right)=fleft(frac1+frac1alpha^21+alpha^2right)=fleft(frac1alpha^2right)
                    $$

                    and thus, as $alpha>0$ and $alphaneq 1$, we have $alpha^4f(alpha^2)=fleft(frac1alpha^2right)=f(alpha^2)implies f(alpha^2)=0$ so $alpha^2inmathcalN$. But then also $alpha^4inmathcalN$ which gives by $(**)$
                    $$
                    0=alpha^4 f(alpha^4)overset(**)= f(1)=1,
                    $$

                    contradiction!



                    Therefore we conclude that $mathcalN$ is empty, and as @Kevin already saw this gives $f(x)=frac1x$ for all $xneq 0$. As $P(0,y)$ gives $f(0)=0$, we have uniquely determined $f$, and we can verify easily that $f$ is indeed a solution of the equation at hand.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited yesterday

























                    answered 2 days ago









                    Redundant AuntRedundant Aunt

                    7,20121244




                    7,20121244





















                        0












                        $begingroup$

                        $colorbrowntextbfSome forms of the equation.$



                        If $underlinexnot=0,$ then unknowns can be swapped. So
                        $$fleft(yf(x)+dfrac xyright) = xyf(x^2+y^2) = fleft(xf(y)+dfrac yxright),tag1$$
                        with the partial cases
                        $$begincases
                        y=1,quad f(f(x)+x) = xf(x^2+1) = fleft(x+dfrac1xright) hspace226mu(2.1)\[4pt]
                        y=x,quad f(xf(x)+1) = x^2f(2x^2) hspace350mu(2.2)\[4pt]
                        endcases$$

                        Denote
                        $$g(x) = xf(x)tag3,$$
                        then from $(2)$ should
                        $$begincases
                        g(1+x^2) = gleft(x+dfrac1xright) hspace432mu(4.1)\[4pt]
                        g(g(x)+1) = frac12g(2x^2)(g(x)+1)hspace370mu(4.2)\[4pt]
                        endcases$$

                        Assume $g(x)$ continuous function.



                        $colorbrowntextbfCorollaries from the formula (4.1).$



                        Using the relationships between the arguments in $(4.1)$ in the form of
                        begincases
                        L_1,2=1+x^2=dfrac 12R(RpmsqrtR^2-4)\[4pt]
                        R_1,2=x+dfrac1x = pmleft(sqrt L-1+dfrac1sqrtL-1right),
                        endcases

                        one can present equation $(4.1)$ in the forms of
                        begincases
                        g(x) = gleft(dfrac 12x(xpmsqrtx^2-4)right)hspace382mu(5.1)\[4pt]
                        g(x) = gleft(pmleft(sqrtx-1 + dfrac1sqrtx-1right)right).hspace330mu(5.2)
                        endcases

                        From $(5.2)$ should $g(1)=g(pminfty),$
                        $$g(pminfty)=1.$$
                        Also, formula $(5.2)$ allows to assign to each point of the interval $(1,2)$ the point of the interval $(2,infty)$ with the same value of the function $g.$



                        At the same time, repeated recursive application of formula $(5.1)$ allows to prove that
                        $$g(x)=1quad forall quad xin((-infty,-2]cup[2,infty)).tag6$$



                        $colorbrowntextbfCorollaries from the formula (4.2).$



                        Let us consider such neighbour of the point $x=1,$ where $g(x)>0.$
                        Then the right part of the system $(4.2)$ can be presented in the form of
                        $$g(2x^2)(1+g(x)) = 2.tag7$$
                        Applying $(7)$ for $x$ from $1$ to $+0$ and from $-2$ to $-0,$ easy to see that
                        $g(x)=1.tag8$



                        The value in the singular point $x=0$ can be defined immediately from the equaion $(1)$ and equals to zero.



                        Theerefore, the OP solution
                        $$f(x) =
                        begincases
                        0,quadtextifquad x=0\[4pt]
                        dfrac1x,quadtextotherwize
                        endcases$$

                        is the single non-trivial solution.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          How do you conclude that $f(-y)=f(y)$ from $(1)$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:49










                        • $begingroup$
                          Also, how do you account for the solution $f=0$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:54










                        • $begingroup$
                          In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:00










                        • $begingroup$
                          Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:06











                        • $begingroup$
                          @Servaes Thanks! Fixed all.
                          $endgroup$
                          – Yuri Negometyanov
                          2 days ago















                        0












                        $begingroup$

                        $colorbrowntextbfSome forms of the equation.$



                        If $underlinexnot=0,$ then unknowns can be swapped. So
                        $$fleft(yf(x)+dfrac xyright) = xyf(x^2+y^2) = fleft(xf(y)+dfrac yxright),tag1$$
                        with the partial cases
                        $$begincases
                        y=1,quad f(f(x)+x) = xf(x^2+1) = fleft(x+dfrac1xright) hspace226mu(2.1)\[4pt]
                        y=x,quad f(xf(x)+1) = x^2f(2x^2) hspace350mu(2.2)\[4pt]
                        endcases$$

                        Denote
                        $$g(x) = xf(x)tag3,$$
                        then from $(2)$ should
                        $$begincases
                        g(1+x^2) = gleft(x+dfrac1xright) hspace432mu(4.1)\[4pt]
                        g(g(x)+1) = frac12g(2x^2)(g(x)+1)hspace370mu(4.2)\[4pt]
                        endcases$$

                        Assume $g(x)$ continuous function.



                        $colorbrowntextbfCorollaries from the formula (4.1).$



                        Using the relationships between the arguments in $(4.1)$ in the form of
                        begincases
                        L_1,2=1+x^2=dfrac 12R(RpmsqrtR^2-4)\[4pt]
                        R_1,2=x+dfrac1x = pmleft(sqrt L-1+dfrac1sqrtL-1right),
                        endcases

                        one can present equation $(4.1)$ in the forms of
                        begincases
                        g(x) = gleft(dfrac 12x(xpmsqrtx^2-4)right)hspace382mu(5.1)\[4pt]
                        g(x) = gleft(pmleft(sqrtx-1 + dfrac1sqrtx-1right)right).hspace330mu(5.2)
                        endcases

                        From $(5.2)$ should $g(1)=g(pminfty),$
                        $$g(pminfty)=1.$$
                        Also, formula $(5.2)$ allows to assign to each point of the interval $(1,2)$ the point of the interval $(2,infty)$ with the same value of the function $g.$



                        At the same time, repeated recursive application of formula $(5.1)$ allows to prove that
                        $$g(x)=1quad forall quad xin((-infty,-2]cup[2,infty)).tag6$$



                        $colorbrowntextbfCorollaries from the formula (4.2).$



                        Let us consider such neighbour of the point $x=1,$ where $g(x)>0.$
                        Then the right part of the system $(4.2)$ can be presented in the form of
                        $$g(2x^2)(1+g(x)) = 2.tag7$$
                        Applying $(7)$ for $x$ from $1$ to $+0$ and from $-2$ to $-0,$ easy to see that
                        $g(x)=1.tag8$



                        The value in the singular point $x=0$ can be defined immediately from the equaion $(1)$ and equals to zero.



                        Theerefore, the OP solution
                        $$f(x) =
                        begincases
                        0,quadtextifquad x=0\[4pt]
                        dfrac1x,quadtextotherwize
                        endcases$$

                        is the single non-trivial solution.






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          How do you conclude that $f(-y)=f(y)$ from $(1)$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:49










                        • $begingroup$
                          Also, how do you account for the solution $f=0$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:54










                        • $begingroup$
                          In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:00










                        • $begingroup$
                          Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:06











                        • $begingroup$
                          @Servaes Thanks! Fixed all.
                          $endgroup$
                          – Yuri Negometyanov
                          2 days ago













                        0












                        0








                        0





                        $begingroup$

                        $colorbrowntextbfSome forms of the equation.$



                        If $underlinexnot=0,$ then unknowns can be swapped. So
                        $$fleft(yf(x)+dfrac xyright) = xyf(x^2+y^2) = fleft(xf(y)+dfrac yxright),tag1$$
                        with the partial cases
                        $$begincases
                        y=1,quad f(f(x)+x) = xf(x^2+1) = fleft(x+dfrac1xright) hspace226mu(2.1)\[4pt]
                        y=x,quad f(xf(x)+1) = x^2f(2x^2) hspace350mu(2.2)\[4pt]
                        endcases$$

                        Denote
                        $$g(x) = xf(x)tag3,$$
                        then from $(2)$ should
                        $$begincases
                        g(1+x^2) = gleft(x+dfrac1xright) hspace432mu(4.1)\[4pt]
                        g(g(x)+1) = frac12g(2x^2)(g(x)+1)hspace370mu(4.2)\[4pt]
                        endcases$$

                        Assume $g(x)$ continuous function.



                        $colorbrowntextbfCorollaries from the formula (4.1).$



                        Using the relationships between the arguments in $(4.1)$ in the form of
                        begincases
                        L_1,2=1+x^2=dfrac 12R(RpmsqrtR^2-4)\[4pt]
                        R_1,2=x+dfrac1x = pmleft(sqrt L-1+dfrac1sqrtL-1right),
                        endcases

                        one can present equation $(4.1)$ in the forms of
                        begincases
                        g(x) = gleft(dfrac 12x(xpmsqrtx^2-4)right)hspace382mu(5.1)\[4pt]
                        g(x) = gleft(pmleft(sqrtx-1 + dfrac1sqrtx-1right)right).hspace330mu(5.2)
                        endcases

                        From $(5.2)$ should $g(1)=g(pminfty),$
                        $$g(pminfty)=1.$$
                        Also, formula $(5.2)$ allows to assign to each point of the interval $(1,2)$ the point of the interval $(2,infty)$ with the same value of the function $g.$



                        At the same time, repeated recursive application of formula $(5.1)$ allows to prove that
                        $$g(x)=1quad forall quad xin((-infty,-2]cup[2,infty)).tag6$$



                        $colorbrowntextbfCorollaries from the formula (4.2).$



                        Let us consider such neighbour of the point $x=1,$ where $g(x)>0.$
                        Then the right part of the system $(4.2)$ can be presented in the form of
                        $$g(2x^2)(1+g(x)) = 2.tag7$$
                        Applying $(7)$ for $x$ from $1$ to $+0$ and from $-2$ to $-0,$ easy to see that
                        $g(x)=1.tag8$



                        The value in the singular point $x=0$ can be defined immediately from the equaion $(1)$ and equals to zero.



                        Theerefore, the OP solution
                        $$f(x) =
                        begincases
                        0,quadtextifquad x=0\[4pt]
                        dfrac1x,quadtextotherwize
                        endcases$$

                        is the single non-trivial solution.






                        share|cite|improve this answer











                        $endgroup$



                        $colorbrowntextbfSome forms of the equation.$



                        If $underlinexnot=0,$ then unknowns can be swapped. So
                        $$fleft(yf(x)+dfrac xyright) = xyf(x^2+y^2) = fleft(xf(y)+dfrac yxright),tag1$$
                        with the partial cases
                        $$begincases
                        y=1,quad f(f(x)+x) = xf(x^2+1) = fleft(x+dfrac1xright) hspace226mu(2.1)\[4pt]
                        y=x,quad f(xf(x)+1) = x^2f(2x^2) hspace350mu(2.2)\[4pt]
                        endcases$$

                        Denote
                        $$g(x) = xf(x)tag3,$$
                        then from $(2)$ should
                        $$begincases
                        g(1+x^2) = gleft(x+dfrac1xright) hspace432mu(4.1)\[4pt]
                        g(g(x)+1) = frac12g(2x^2)(g(x)+1)hspace370mu(4.2)\[4pt]
                        endcases$$

                        Assume $g(x)$ continuous function.



                        $colorbrowntextbfCorollaries from the formula (4.1).$



                        Using the relationships between the arguments in $(4.1)$ in the form of
                        begincases
                        L_1,2=1+x^2=dfrac 12R(RpmsqrtR^2-4)\[4pt]
                        R_1,2=x+dfrac1x = pmleft(sqrt L-1+dfrac1sqrtL-1right),
                        endcases

                        one can present equation $(4.1)$ in the forms of
                        begincases
                        g(x) = gleft(dfrac 12x(xpmsqrtx^2-4)right)hspace382mu(5.1)\[4pt]
                        g(x) = gleft(pmleft(sqrtx-1 + dfrac1sqrtx-1right)right).hspace330mu(5.2)
                        endcases

                        From $(5.2)$ should $g(1)=g(pminfty),$
                        $$g(pminfty)=1.$$
                        Also, formula $(5.2)$ allows to assign to each point of the interval $(1,2)$ the point of the interval $(2,infty)$ with the same value of the function $g.$



                        At the same time, repeated recursive application of formula $(5.1)$ allows to prove that
                        $$g(x)=1quad forall quad xin((-infty,-2]cup[2,infty)).tag6$$



                        $colorbrowntextbfCorollaries from the formula (4.2).$



                        Let us consider such neighbour of the point $x=1,$ where $g(x)>0.$
                        Then the right part of the system $(4.2)$ can be presented in the form of
                        $$g(2x^2)(1+g(x)) = 2.tag7$$
                        Applying $(7)$ for $x$ from $1$ to $+0$ and from $-2$ to $-0,$ easy to see that
                        $g(x)=1.tag8$



                        The value in the singular point $x=0$ can be defined immediately from the equaion $(1)$ and equals to zero.



                        Theerefore, the OP solution
                        $$f(x) =
                        begincases
                        0,quadtextifquad x=0\[4pt]
                        dfrac1x,quadtextotherwize
                        endcases$$

                        is the single non-trivial solution.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited 2 days ago

























                        answered Mar 29 at 21:45









                        Yuri NegometyanovYuri Negometyanov

                        12.5k1729




                        12.5k1729











                        • $begingroup$
                          How do you conclude that $f(-y)=f(y)$ from $(1)$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:49










                        • $begingroup$
                          Also, how do you account for the solution $f=0$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:54










                        • $begingroup$
                          In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:00










                        • $begingroup$
                          Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:06











                        • $begingroup$
                          @Servaes Thanks! Fixed all.
                          $endgroup$
                          – Yuri Negometyanov
                          2 days ago
















                        • $begingroup$
                          How do you conclude that $f(-y)=f(y)$ from $(1)$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:49










                        • $begingroup$
                          Also, how do you account for the solution $f=0$?
                          $endgroup$
                          – Servaes
                          Mar 29 at 21:54










                        • $begingroup$
                          In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:00










                        • $begingroup$
                          Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
                          $endgroup$
                          – Servaes
                          Mar 29 at 22:06











                        • $begingroup$
                          @Servaes Thanks! Fixed all.
                          $endgroup$
                          – Yuri Negometyanov
                          2 days ago















                        $begingroup$
                        How do you conclude that $f(-y)=f(y)$ from $(1)$?
                        $endgroup$
                        – Servaes
                        Mar 29 at 21:49




                        $begingroup$
                        How do you conclude that $f(-y)=f(y)$ from $(1)$?
                        $endgroup$
                        – Servaes
                        Mar 29 at 21:49












                        $begingroup$
                        Also, how do you account for the solution $f=0$?
                        $endgroup$
                        – Servaes
                        Mar 29 at 21:54




                        $begingroup$
                        Also, how do you account for the solution $f=0$?
                        $endgroup$
                        – Servaes
                        Mar 29 at 21:54












                        $begingroup$
                        In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
                        $endgroup$
                        – Servaes
                        Mar 29 at 22:00




                        $begingroup$
                        In fact, if $f$ is monotonic it is injective and then the fact that $$f(yf(x)+tfracxy)=xyf(x^2+y^2)=(-x)(-y)f((-x)^2+(-y)^2)=f(-yf(-x)+tfrac-x-y),$$ shows that $f(-x)=-f(x)$ for all $xinBbbR$, directly contradicting $(2)$ unless $f=0$.
                        $endgroup$
                        – Servaes
                        Mar 29 at 22:00












                        $begingroup$
                        Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
                        $endgroup$
                        – Servaes
                        Mar 29 at 22:06





                        $begingroup$
                        Also, I don't see immediately how you prove that $f$ is monotonic on these intervals; your observation partitions $(1,infty)$ into infinite sequences on which $f$ is monotonic, but I don't see how this implies that $f$ is monotonic on the entire interval. The same for the interval $(0,1)$.
                        $endgroup$
                        – Servaes
                        Mar 29 at 22:06













                        $begingroup$
                        @Servaes Thanks! Fixed all.
                        $endgroup$
                        – Yuri Negometyanov
                        2 days ago




                        $begingroup$
                        @Servaes Thanks! Fixed all.
                        $endgroup$
                        – Yuri Negometyanov
                        2 days ago











                        0












                        $begingroup$

                        Let $f:textbfRrightarrowtextbfR$, such that $f(1)=1$ and
                        $$
                        fleft(yf(x)+fracxyright)=xyf(x^2+y^2)textrm, forall (x,y)intextbfRtimestextbfR^*tag 1
                        $$

                        Set $x=0$, $y=1$ in (1), then easily $f(0)=0$ (the case $f(0)neq 0$ is trivial). For $y=1$ in (1) we get
                        $$
                        xf(x^2+1)=f(f(x)+x)textrm, xneq 0.tag 2
                        $$

                        Also using the symmetry we get
                        $$
                        fleft(yf(x)+fracxyright)=fleft(xf(y)+fracyxright)textrm, x,yneq 0
                        $$

                        For $y=1$, we get
                        $$
                        fleft(x+frac1xright)=f(f(x)+x)textrm, xneq 0tag 3
                        $$

                        Assume that $h(x,y)$ is a surface (function) such that
                        $$
                        f(y+h(x,y))=f(x).tag 4
                        $$

                        Note.



                        One choise of $h(x,y)$ is $h(x,y)=-y+x$ but may be there others. For example if $f(x)=x^2-x+1$, then $h(x,y)=x-y$ or $h(x,y)=1-x-y$.



                        We assume here that
                        $$
                        f(x)=hleft(x+frac1x,xright)tag4.1
                        $$


                        From (4) with $xrightarrow x+frac1x$ we get
                        $$
                        fleft(x+frac1xright)=fleft(y+hleft(x+frac1x,yright)right).
                        $$

                        Hence for $y=x$ in the above identity we get
                        $$
                        fleft(x+frac1xright)=fleft(x+hleft(x+frac1x,xright)right)=f(x+f(x))
                        $$

                        Hence we can get (3). From (2) and (3) we get also
                        $$
                        xf(x^2+1)=fleft(x+frac1xright)tag 6
                        $$

                        Setting $xrightarrow x^-1$ in (6)
                        $$
                        frac1xfleft(1+frac1x^2right)=fleft(x+frac1xright)=xf(x^2+1).tag 7
                        $$

                        Hence if we set $x^2rightarrow x>0$ in (7), then
                        $$
                        fleft(1+frac1xright)=xf(x+1)textrm, for all x>0.tag 8
                        $$

                        Set also $x=y-1>0$ in (8), then
                        $$
                        fleft(fracyy-1right)=(y-1)f(y)textrm, y>1.
                        $$

                        With $y=1/w>1$ we get
                        $$
                        frac11-wfleft(frac11-wright)=frac1wfleft(frac1wright).
                        $$

                        Hence if $0<w<1$ and $g(w):=frac1wfleft(frac1wright)$, then
                        $$
                        f(x)=x^-1gleft(x^-1right)textrm, where x>1textrm and g(1-w)=g(w)textrm, 0<w<1tag 9
                        $$

                        The solution (9) satisfies (8),(7),(6), but for to holds (3) we get plus a new functional equation for $f(x)$ and this is (4.1).



                        Hence the general solution is
                        $$
                        f(x)=hleft(x+frac1x,xright)tag11
                        $$

                        with
                        $$
                        frac1x-1hleft(x-1+frac1x-1,frac1x-1right)=frac1xhleft(x+frac1x,frac1xright)tag12
                        $$

                        and $h(x,y)$ solution of
                        $$
                        f(y+h(x,y))=f(x).tag13
                        $$

                        An obvious solution of $(13)$ is $h(x,y)=x-y$, but it may exist and other solutions.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Let $f:textbfRrightarrowtextbfR$, such that $f(1)=1$ and
                          $$
                          fleft(yf(x)+fracxyright)=xyf(x^2+y^2)textrm, forall (x,y)intextbfRtimestextbfR^*tag 1
                          $$

                          Set $x=0$, $y=1$ in (1), then easily $f(0)=0$ (the case $f(0)neq 0$ is trivial). For $y=1$ in (1) we get
                          $$
                          xf(x^2+1)=f(f(x)+x)textrm, xneq 0.tag 2
                          $$

                          Also using the symmetry we get
                          $$
                          fleft(yf(x)+fracxyright)=fleft(xf(y)+fracyxright)textrm, x,yneq 0
                          $$

                          For $y=1$, we get
                          $$
                          fleft(x+frac1xright)=f(f(x)+x)textrm, xneq 0tag 3
                          $$

                          Assume that $h(x,y)$ is a surface (function) such that
                          $$
                          f(y+h(x,y))=f(x).tag 4
                          $$

                          Note.



                          One choise of $h(x,y)$ is $h(x,y)=-y+x$ but may be there others. For example if $f(x)=x^2-x+1$, then $h(x,y)=x-y$ or $h(x,y)=1-x-y$.



                          We assume here that
                          $$
                          f(x)=hleft(x+frac1x,xright)tag4.1
                          $$


                          From (4) with $xrightarrow x+frac1x$ we get
                          $$
                          fleft(x+frac1xright)=fleft(y+hleft(x+frac1x,yright)right).
                          $$

                          Hence for $y=x$ in the above identity we get
                          $$
                          fleft(x+frac1xright)=fleft(x+hleft(x+frac1x,xright)right)=f(x+f(x))
                          $$

                          Hence we can get (3). From (2) and (3) we get also
                          $$
                          xf(x^2+1)=fleft(x+frac1xright)tag 6
                          $$

                          Setting $xrightarrow x^-1$ in (6)
                          $$
                          frac1xfleft(1+frac1x^2right)=fleft(x+frac1xright)=xf(x^2+1).tag 7
                          $$

                          Hence if we set $x^2rightarrow x>0$ in (7), then
                          $$
                          fleft(1+frac1xright)=xf(x+1)textrm, for all x>0.tag 8
                          $$

                          Set also $x=y-1>0$ in (8), then
                          $$
                          fleft(fracyy-1right)=(y-1)f(y)textrm, y>1.
                          $$

                          With $y=1/w>1$ we get
                          $$
                          frac11-wfleft(frac11-wright)=frac1wfleft(frac1wright).
                          $$

                          Hence if $0<w<1$ and $g(w):=frac1wfleft(frac1wright)$, then
                          $$
                          f(x)=x^-1gleft(x^-1right)textrm, where x>1textrm and g(1-w)=g(w)textrm, 0<w<1tag 9
                          $$

                          The solution (9) satisfies (8),(7),(6), but for to holds (3) we get plus a new functional equation for $f(x)$ and this is (4.1).



                          Hence the general solution is
                          $$
                          f(x)=hleft(x+frac1x,xright)tag11
                          $$

                          with
                          $$
                          frac1x-1hleft(x-1+frac1x-1,frac1x-1right)=frac1xhleft(x+frac1x,frac1xright)tag12
                          $$

                          and $h(x,y)$ solution of
                          $$
                          f(y+h(x,y))=f(x).tag13
                          $$

                          An obvious solution of $(13)$ is $h(x,y)=x-y$, but it may exist and other solutions.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Let $f:textbfRrightarrowtextbfR$, such that $f(1)=1$ and
                            $$
                            fleft(yf(x)+fracxyright)=xyf(x^2+y^2)textrm, forall (x,y)intextbfRtimestextbfR^*tag 1
                            $$

                            Set $x=0$, $y=1$ in (1), then easily $f(0)=0$ (the case $f(0)neq 0$ is trivial). For $y=1$ in (1) we get
                            $$
                            xf(x^2+1)=f(f(x)+x)textrm, xneq 0.tag 2
                            $$

                            Also using the symmetry we get
                            $$
                            fleft(yf(x)+fracxyright)=fleft(xf(y)+fracyxright)textrm, x,yneq 0
                            $$

                            For $y=1$, we get
                            $$
                            fleft(x+frac1xright)=f(f(x)+x)textrm, xneq 0tag 3
                            $$

                            Assume that $h(x,y)$ is a surface (function) such that
                            $$
                            f(y+h(x,y))=f(x).tag 4
                            $$

                            Note.



                            One choise of $h(x,y)$ is $h(x,y)=-y+x$ but may be there others. For example if $f(x)=x^2-x+1$, then $h(x,y)=x-y$ or $h(x,y)=1-x-y$.



                            We assume here that
                            $$
                            f(x)=hleft(x+frac1x,xright)tag4.1
                            $$


                            From (4) with $xrightarrow x+frac1x$ we get
                            $$
                            fleft(x+frac1xright)=fleft(y+hleft(x+frac1x,yright)right).
                            $$

                            Hence for $y=x$ in the above identity we get
                            $$
                            fleft(x+frac1xright)=fleft(x+hleft(x+frac1x,xright)right)=f(x+f(x))
                            $$

                            Hence we can get (3). From (2) and (3) we get also
                            $$
                            xf(x^2+1)=fleft(x+frac1xright)tag 6
                            $$

                            Setting $xrightarrow x^-1$ in (6)
                            $$
                            frac1xfleft(1+frac1x^2right)=fleft(x+frac1xright)=xf(x^2+1).tag 7
                            $$

                            Hence if we set $x^2rightarrow x>0$ in (7), then
                            $$
                            fleft(1+frac1xright)=xf(x+1)textrm, for all x>0.tag 8
                            $$

                            Set also $x=y-1>0$ in (8), then
                            $$
                            fleft(fracyy-1right)=(y-1)f(y)textrm, y>1.
                            $$

                            With $y=1/w>1$ we get
                            $$
                            frac11-wfleft(frac11-wright)=frac1wfleft(frac1wright).
                            $$

                            Hence if $0<w<1$ and $g(w):=frac1wfleft(frac1wright)$, then
                            $$
                            f(x)=x^-1gleft(x^-1right)textrm, where x>1textrm and g(1-w)=g(w)textrm, 0<w<1tag 9
                            $$

                            The solution (9) satisfies (8),(7),(6), but for to holds (3) we get plus a new functional equation for $f(x)$ and this is (4.1).



                            Hence the general solution is
                            $$
                            f(x)=hleft(x+frac1x,xright)tag11
                            $$

                            with
                            $$
                            frac1x-1hleft(x-1+frac1x-1,frac1x-1right)=frac1xhleft(x+frac1x,frac1xright)tag12
                            $$

                            and $h(x,y)$ solution of
                            $$
                            f(y+h(x,y))=f(x).tag13
                            $$

                            An obvious solution of $(13)$ is $h(x,y)=x-y$, but it may exist and other solutions.






                            share|cite|improve this answer









                            $endgroup$



                            Let $f:textbfRrightarrowtextbfR$, such that $f(1)=1$ and
                            $$
                            fleft(yf(x)+fracxyright)=xyf(x^2+y^2)textrm, forall (x,y)intextbfRtimestextbfR^*tag 1
                            $$

                            Set $x=0$, $y=1$ in (1), then easily $f(0)=0$ (the case $f(0)neq 0$ is trivial). For $y=1$ in (1) we get
                            $$
                            xf(x^2+1)=f(f(x)+x)textrm, xneq 0.tag 2
                            $$

                            Also using the symmetry we get
                            $$
                            fleft(yf(x)+fracxyright)=fleft(xf(y)+fracyxright)textrm, x,yneq 0
                            $$

                            For $y=1$, we get
                            $$
                            fleft(x+frac1xright)=f(f(x)+x)textrm, xneq 0tag 3
                            $$

                            Assume that $h(x,y)$ is a surface (function) such that
                            $$
                            f(y+h(x,y))=f(x).tag 4
                            $$

                            Note.



                            One choise of $h(x,y)$ is $h(x,y)=-y+x$ but may be there others. For example if $f(x)=x^2-x+1$, then $h(x,y)=x-y$ or $h(x,y)=1-x-y$.



                            We assume here that
                            $$
                            f(x)=hleft(x+frac1x,xright)tag4.1
                            $$


                            From (4) with $xrightarrow x+frac1x$ we get
                            $$
                            fleft(x+frac1xright)=fleft(y+hleft(x+frac1x,yright)right).
                            $$

                            Hence for $y=x$ in the above identity we get
                            $$
                            fleft(x+frac1xright)=fleft(x+hleft(x+frac1x,xright)right)=f(x+f(x))
                            $$

                            Hence we can get (3). From (2) and (3) we get also
                            $$
                            xf(x^2+1)=fleft(x+frac1xright)tag 6
                            $$

                            Setting $xrightarrow x^-1$ in (6)
                            $$
                            frac1xfleft(1+frac1x^2right)=fleft(x+frac1xright)=xf(x^2+1).tag 7
                            $$

                            Hence if we set $x^2rightarrow x>0$ in (7), then
                            $$
                            fleft(1+frac1xright)=xf(x+1)textrm, for all x>0.tag 8
                            $$

                            Set also $x=y-1>0$ in (8), then
                            $$
                            fleft(fracyy-1right)=(y-1)f(y)textrm, y>1.
                            $$

                            With $y=1/w>1$ we get
                            $$
                            frac11-wfleft(frac11-wright)=frac1wfleft(frac1wright).
                            $$

                            Hence if $0<w<1$ and $g(w):=frac1wfleft(frac1wright)$, then
                            $$
                            f(x)=x^-1gleft(x^-1right)textrm, where x>1textrm and g(1-w)=g(w)textrm, 0<w<1tag 9
                            $$

                            The solution (9) satisfies (8),(7),(6), but for to holds (3) we get plus a new functional equation for $f(x)$ and this is (4.1).



                            Hence the general solution is
                            $$
                            f(x)=hleft(x+frac1x,xright)tag11
                            $$

                            with
                            $$
                            frac1x-1hleft(x-1+frac1x-1,frac1x-1right)=frac1xhleft(x+frac1x,frac1xright)tag12
                            $$

                            and $h(x,y)$ solution of
                            $$
                            f(y+h(x,y))=f(x).tag13
                            $$

                            An obvious solution of $(13)$ is $h(x,y)=x-y$, but it may exist and other solutions.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered yesterday









                            Nikos Bagis Nikos Bagis

                            2,462616




                            2,462616



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156382%2fsolving-fyfxx-y-xyfx2y2-over-the-reals%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye

                                random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                                How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer