Inequality with log-sumImpossible inequality : Dottie NumberA simple application of Jensen's inequalityTitan inequality for amateurInequality for amateursKaramata + Jensen = Niculescu's inequality (version of 1991)Hard inequality with condition ($xyz=1$)Inequality using JensenRefinement of a strong inequalityPower sum inequalityPower sum refinement inequality
How dangerous is XSS?
Is it acceptable for a professor to tell male students to not think that they are smarter than female students?
Short story with a alien planet, government officials must wear exploding medallions
How can I determine if the org that I'm currently connected to is a scratch org?
How do I handle a potential work/personal life conflict as the manager of one of my friends?
Why can't we play rap on piano?
Detention in 1997
Why are the 737's rear doors unusable in a water landing?
Alternative to sending password over mail?
How to show a landlord what we have in savings?
Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?
What killed these X2 caps?
How do I deal with an unproductive colleague in a small company?
Is it possible to create a QR code using text?
Watching something be piped to a file live with tail
What reasons are there for a Capitalist to oppose a 100% inheritance tax?
How to tell a function to use the default argument values?
Is there a hemisphere-neutral way of specifying a season?
What does the expression "A Mann!" means
What about the virus in 12 Monkeys?
How can saying a song's name be a copyright violation?
Why is this clock signal connected to a capacitor to gnd?
Different meanings of こわい
Expand and Contract
Inequality with log-sum
Impossible inequality : Dottie NumberA simple application of Jensen's inequalityTitan inequality for amateurInequality for amateursKaramata + Jensen = Niculescu's inequality (version of 1991)Hard inequality with condition ($xyz=1$)Inequality using JensenRefinement of a strong inequalityPower sum inequalityPower sum refinement inequality
$begingroup$
I'm interested by the following problem :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ then we have :
$$abln(a)+bcln(b)+cdln(c)+daln(d)> -1.37$$
My try for $bgeq 3,aleq1,cleq 1,dleq1$:
We have the following inequality :
Let $varepsilon >0$ and $x>0$ then we have :
$$fracx(1-varepsilon)varepsilon-frac(x)^1-varepsilonvarepsilon e^varepsilonleq xln(x)$$
So we have to prove (here I take $varepsilon=0.001$):
$$fracab(1-varepsilon)varepsilon-fracb(a)^1-varepsilonvarepsilon e^varepsilon+fracbc(1-varepsilon)varepsilon-fracc(b)^1-varepsilonvarepsilon e^varepsilon+fraccd(1-varepsilon)varepsilon-fracd(c)^1-varepsilonvarepsilon e^varepsilon+fracda(1-varepsilon)varepsilon-fraca(d)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Now I use a form of Jensen's inequality :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ and $bgeq 3,aleq1,cleq 1,dleq1$ then we have :
$$3.7(fracab+bc+cd+da3.7)^1-varepsilon>b(a)^1-varepsilon+c(b)^1-varepsilon+d(c)^1-varepsilon+a(d)^1-varepsilon$$
If we combine this two fact we have to prove :
$$frac(ab+bc+cd+da)(1-varepsilon)varepsilon-frac3.7(fracab+bc+cd+da3.7)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Wich is a one variable inequality because $$varepsilon=0.001$$
I have two questions :
How to complete my reasoning ?
How to prove this version of Jensen's inequality ?
Thanks in advance for your time .
real-analysis logarithms jensen-inequality
$endgroup$
add a comment |
$begingroup$
I'm interested by the following problem :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ then we have :
$$abln(a)+bcln(b)+cdln(c)+daln(d)> -1.37$$
My try for $bgeq 3,aleq1,cleq 1,dleq1$:
We have the following inequality :
Let $varepsilon >0$ and $x>0$ then we have :
$$fracx(1-varepsilon)varepsilon-frac(x)^1-varepsilonvarepsilon e^varepsilonleq xln(x)$$
So we have to prove (here I take $varepsilon=0.001$):
$$fracab(1-varepsilon)varepsilon-fracb(a)^1-varepsilonvarepsilon e^varepsilon+fracbc(1-varepsilon)varepsilon-fracc(b)^1-varepsilonvarepsilon e^varepsilon+fraccd(1-varepsilon)varepsilon-fracd(c)^1-varepsilonvarepsilon e^varepsilon+fracda(1-varepsilon)varepsilon-fraca(d)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Now I use a form of Jensen's inequality :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ and $bgeq 3,aleq1,cleq 1,dleq1$ then we have :
$$3.7(fracab+bc+cd+da3.7)^1-varepsilon>b(a)^1-varepsilon+c(b)^1-varepsilon+d(c)^1-varepsilon+a(d)^1-varepsilon$$
If we combine this two fact we have to prove :
$$frac(ab+bc+cd+da)(1-varepsilon)varepsilon-frac3.7(fracab+bc+cd+da3.7)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Wich is a one variable inequality because $$varepsilon=0.001$$
I have two questions :
How to complete my reasoning ?
How to prove this version of Jensen's inequality ?
Thanks in advance for your time .
real-analysis logarithms jensen-inequality
$endgroup$
add a comment |
$begingroup$
I'm interested by the following problem :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ then we have :
$$abln(a)+bcln(b)+cdln(c)+daln(d)> -1.37$$
My try for $bgeq 3,aleq1,cleq 1,dleq1$:
We have the following inequality :
Let $varepsilon >0$ and $x>0$ then we have :
$$fracx(1-varepsilon)varepsilon-frac(x)^1-varepsilonvarepsilon e^varepsilonleq xln(x)$$
So we have to prove (here I take $varepsilon=0.001$):
$$fracab(1-varepsilon)varepsilon-fracb(a)^1-varepsilonvarepsilon e^varepsilon+fracbc(1-varepsilon)varepsilon-fracc(b)^1-varepsilonvarepsilon e^varepsilon+fraccd(1-varepsilon)varepsilon-fracd(c)^1-varepsilonvarepsilon e^varepsilon+fracda(1-varepsilon)varepsilon-fraca(d)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Now I use a form of Jensen's inequality :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ and $bgeq 3,aleq1,cleq 1,dleq1$ then we have :
$$3.7(fracab+bc+cd+da3.7)^1-varepsilon>b(a)^1-varepsilon+c(b)^1-varepsilon+d(c)^1-varepsilon+a(d)^1-varepsilon$$
If we combine this two fact we have to prove :
$$frac(ab+bc+cd+da)(1-varepsilon)varepsilon-frac3.7(fracab+bc+cd+da3.7)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Wich is a one variable inequality because $$varepsilon=0.001$$
I have two questions :
How to complete my reasoning ?
How to prove this version of Jensen's inequality ?
Thanks in advance for your time .
real-analysis logarithms jensen-inequality
$endgroup$
I'm interested by the following problem :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ then we have :
$$abln(a)+bcln(b)+cdln(c)+daln(d)> -1.37$$
My try for $bgeq 3,aleq1,cleq 1,dleq1$:
We have the following inequality :
Let $varepsilon >0$ and $x>0$ then we have :
$$fracx(1-varepsilon)varepsilon-frac(x)^1-varepsilonvarepsilon e^varepsilonleq xln(x)$$
So we have to prove (here I take $varepsilon=0.001$):
$$fracab(1-varepsilon)varepsilon-fracb(a)^1-varepsilonvarepsilon e^varepsilon+fracbc(1-varepsilon)varepsilon-fracc(b)^1-varepsilonvarepsilon e^varepsilon+fraccd(1-varepsilon)varepsilon-fracd(c)^1-varepsilonvarepsilon e^varepsilon+fracda(1-varepsilon)varepsilon-fraca(d)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Now I use a form of Jensen's inequality :
Let $a,b,c,d>0$ such that $a+b+c+d=4$ and $bgeq 3,aleq1,cleq 1,dleq1$ then we have :
$$3.7(fracab+bc+cd+da3.7)^1-varepsilon>b(a)^1-varepsilon+c(b)^1-varepsilon+d(c)^1-varepsilon+a(d)^1-varepsilon$$
If we combine this two fact we have to prove :
$$frac(ab+bc+cd+da)(1-varepsilon)varepsilon-frac3.7(fracab+bc+cd+da3.7)^1-varepsilonvarepsilon e^varepsilon>-1.37$$
Wich is a one variable inequality because $$varepsilon=0.001$$
I have two questions :
How to complete my reasoning ?
How to prove this version of Jensen's inequality ?
Thanks in advance for your time .
real-analysis logarithms jensen-inequality
real-analysis logarithms jensen-inequality
asked Mar 21 at 7:57
max8128max8128
231422
231422
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156498%2finequality-with-log-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156498%2finequality-with-log-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown