Robust random early detection Contents The Design of Robust RED (RRED) Algorithm of the Robust RED (RRED) The Simulation code of the Robust RED (RRED) References External links Navigation menuAQM&DoS Simulation Platform"RRED: Robust RED algorithm to counter low-rate denial-of-service attacks"10.1109/LCOMM.2010.05.091407AQM&DoS Simulation PlatformRecent Publications in Low-rate Denial-of-Service (LDoS) attacks Recent Publications in Random Early Detection (RED) schemesRecent Publications in Active Queue Management (AQM) schemes

Network performancePackets (information technology)Denial-of-service attacksComputer network security


network schedulerrandom early detectionLow-rate Denial-of-Service attacksactive queue managementdenial-of-service attackAQM&DoS Simulation PlatformRED




Robust random early detection (RRED) is a queueing disclipine for a network scheduler. The existing random early detection (RED) algorithm and its variants are found vulnerable to emerging attacks, especially the Low-rate Denial-of-Service attacks (LDoS). Experiments have confirmed that the existing RED-like algorithms are notably vulnerable under LDoS attacks due to the oscillating TCP queue size caused by the attacks.[1]


The Robust RED (RRED) algorithm was proposed to improve the TCP throughput against LDoS attacks. The basic idea behind the RRED is to detect and filter out attack packets before a normal RED algorithm is applied to incoming flows. RRED algorithm can significantly improve the performance of TCP under Low-rate denial-of-service attacks.[1]




Contents





  • 1 The Design of Robust RED (RRED)


  • 2 Algorithm of the Robust RED (RRED)


  • 3 The Simulation code of the Robust RED (RRED)


  • 4 References


  • 5 External links




The Design of Robust RED (RRED)


A detection and filter block is added in front of a regular RED block on a router. The basic idea behind the RRED is to detect and filter out LDoS attack packets from incoming flows before they feed to the RED algorithm. How to distinguish an attacking packet from normal TCP packets is critical in the RRED design.


Within a benign TCP flow, the sender will delay sending new packets if loss is detected (e.g., a packet is dropped). Consequently, a packet is suspected to be an attacking packet if it is sent within a short-range after a packet is dropped. This is the basic idea of the detection algorithm of Robust RED (RRED).[1]



Algorithm of the Robust RED (RRED)


RRED-ENQUE(pkt)
01 f←RRED-FLOWHASH(pkt)
02 Tmax←MAX(Flow[f].T1, T2)
03 if pkt.arrivaltime is within [Tmax, Tmax+T*] then
04 reduce local indicator by 1 for each bin corresponding to f
05 else
06 increase local indicator by 1 for each bin of f
07 Flow[f].I←maximum of local indicators from bins of f
08 if Flow[f].I >=0 then
09 RED-ENQUE(pkt) //pass pkt to the RED block
10 if RED drops pkt then
11 T2←pkt.arrivaltime
12 else
13 Flow[f].T1←pkt.arrivaltime
14 drop(pkt)
15 return



  • f.T1 is the arrival time of the last packet from flow f that is dropped by the detection and filter block.


  • T2 is the arrival time of the last packet from any flow that is dropped by the random early detection (RED) block.


  • Tmax = max(f.T1, T2).


  • T* is a short time period, which is empirically chosen to be 10 ms in a default RRED algorithm.[1]


The Simulation code of the Robust RED (RRED)


The simulation code of the RRED algorithm is published as an active queue management and denial-of-service attack (AQM&DoS) simulation platform. The AQM&DoS Simulation Platform is able to simulate a variety of DoS attacks (Distributed DoS, Spoofing DoS, Low-rate DoS, etc.) and active queue management (AQM) algorithms (RED, RRED, SFB, etc.). It automatically calculates and records the average throughput of normal TCP flows before and after DoS attacks to facilitate the analysis of the impact of DoS attacks on normal TCP flows and AQM algorithms.



References




  1. ^ abcd Zhang, C.; Yin, J.; Cai, Z.; Chen, W. (May 2010). "RRED: Robust RED algorithm to counter low-rate denial-of-service attacks" (PDF). IEEE Communications Letters. 14 (5): 489–491. doi:10.1109/LCOMM.2010.05.091407..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em




External links


  • AQM&DoS Simulation Platform

  • Recent Publications in Low-rate Denial-of-Service (LDoS) attacks

  • Recent Publications in Random Early Detection (RED) schemes

  • Recent Publications in Active Queue Management (AQM) schemes


Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers