Prove that $sum_cycfraca^2ca^2 + 2c^2 ge 1$ [duplicate] The 2019 Stack Overflow Developer Survey Results Are InHow prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$How prove this inequality $sumlimits_cycfraca^3b+c+dge dfrac13$,if $sumlimits_cycasqrtbcge 1$If $x+y+z=3$, then $sum_textcycfracx^22y^2-y+3gefrac34$Prove $sumlimits_textcycfracaa+(n-1)bgeq 1$To prove $sum_cycfrac1a^3+b^3+abc le frac1abc$If $a+b+c = 3$ show $9 + 3 sum_mboxcycacosleft( frac2bcright)geq 2left( sum_mboxcycacosleft( fracbcright) right)^2$show $sum_cyc(1-x)^2ge sum_cycfracz^2(1-x^2)(1-y^2)(xy+z)^2.$Inequality : $sum_cycfracsqrta^3c2sqrtb^3a+3bcgeq frac35$If $ab+bc+ca=3$ for non-negative $a$, $b$, $c$, show that $sum_cyca^2b^2+sum_cycfrac12a^2b^2c^2(a+b)^2ge 12abc$$a,b,c>0$ and $abc=1$; prove $sum_cycfrac1(b+1)^2+frac1a+b+c+1ge1$Prove that $sum_cycdfracaa + b^4 + c^4 le 1$ where $abc = 1$.

What is the most effective way of iterating a std::vector and why?

Deal with toxic manager when you can't quit

Falsification in Math vs Science

What is the accessibility of a package's `Private` context variables?

Loose spokes after only a few rides

Apparent duplicates between Haynes service instructions and MOT

How to deal with fear of taking dependencies

How to manage monthly salary

Does a dangling wire really electrocute me if I'm standing in water?

Protecting Dualbooting Windows from dangerous code (like rm -rf)

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

How can I autofill dates in Excel excluding Sunday?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Can we generate random numbers using irrational numbers like π and e?

Button changing it's text & action. Good or terrible?

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

Worn-tile Scrabble

Lightning Grid - Columns and Rows?

Why can Shazam fly?

Where to refill my bottle in India?

Is three citations per paragraph excessive for undergraduate research paper?

What is the meaning of the verb "bear" in this context?

What is the motivation for a law requiring 2 parties to consent for recording a conversation



Prove that $sum_cycfraca^2ca^2 + 2c^2 ge 1$ [duplicate]



The 2019 Stack Overflow Developer Survey Results Are InHow prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$How prove this inequality $sumlimits_cycfraca^3b+c+dge dfrac13$,if $sumlimits_cycasqrtbcge 1$If $x+y+z=3$, then $sum_textcycfracx^22y^2-y+3gefrac34$Prove $sumlimits_textcycfracaa+(n-1)bgeq 1$To prove $sum_cycfrac1a^3+b^3+abc le frac1abc$If $a+b+c = 3$ show $9 + 3 sum_mboxcycacosleft( frac2bcright)geq 2left( sum_mboxcycacosleft( fracbcright) right)^2$show $sum_cyc(1-x)^2ge sum_cycfracz^2(1-x^2)(1-y^2)(xy+z)^2.$Inequality : $sum_cycfracsqrta^3c2sqrtb^3a+3bcgeq frac35$If $ab+bc+ca=3$ for non-negative $a$, $b$, $c$, show that $sum_cyca^2b^2+sum_cycfrac12a^2b^2c^2(a+b)^2ge 12abc$$a,b,c>0$ and $abc=1$; prove $sum_cycfrac1(b+1)^2+frac1a+b+c+1ge1$Prove that $sum_cycdfracaa + b^4 + c^4 le 1$ where $abc = 1$.










0












$begingroup$



This question already has an answer here:



  • How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$

    1 answer




$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$




Here's what I did. My stupidity has reached a spiritual level.



We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.



$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$



$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$



$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$



$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$



I am done with my life.










share|cite|improve this question











$endgroup$



marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • 1




    $begingroup$
    is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 23 at 17:34






  • 6




    $begingroup$
    Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
    $endgroup$
    – Word Shallow
    Mar 24 at 2:46
















0












$begingroup$



This question already has an answer here:



  • How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$

    1 answer




$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$




Here's what I did. My stupidity has reached a spiritual level.



We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.



$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$



$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$



$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$



$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$



I am done with my life.










share|cite|improve this question











$endgroup$



marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • 1




    $begingroup$
    is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 23 at 17:34






  • 6




    $begingroup$
    Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
    $endgroup$
    – Word Shallow
    Mar 24 at 2:46














0












0








0


3



$begingroup$



This question already has an answer here:



  • How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$

    1 answer




$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$




Here's what I did. My stupidity has reached a spiritual level.



We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.



$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$



$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$



$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$



$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$



I am done with my life.










share|cite|improve this question











$endgroup$





This question already has an answer here:



  • How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$

    1 answer




$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$




Here's what I did. My stupidity has reached a spiritual level.



We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.



$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$



$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$



$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$



$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$



I am done with my life.





This question already has an answer here:



  • How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$

    1 answer







inequality substitution cauchy-schwarz-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 23 at 18:08









StubbornAtom

6,37831440




6,37831440










asked Mar 23 at 17:29









Lê Thành ĐạtLê Thành Đạt

47313




47313




marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









  • 1




    $begingroup$
    is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 23 at 17:34






  • 6




    $begingroup$
    Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
    $endgroup$
    – Word Shallow
    Mar 24 at 2:46













  • 1




    $begingroup$
    is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 23 at 17:34






  • 6




    $begingroup$
    Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
    $endgroup$
    – Word Shallow
    Mar 24 at 2:46








1




1




$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34




$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34




6




6




$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46





$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46











1 Answer
1






active

oldest

votes


















1












$begingroup$

Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.



Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Power means works, right?
    $endgroup$
    – user574848
    Mar 24 at 7:37










  • $begingroup$
    @user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
    $endgroup$
    – Michael Rozenberg
    Mar 24 at 7:39











  • $begingroup$
    oh I misread xyz=1
    $endgroup$
    – user574848
    Mar 24 at 7:41

















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.



Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Power means works, right?
    $endgroup$
    – user574848
    Mar 24 at 7:37










  • $begingroup$
    @user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
    $endgroup$
    – Michael Rozenberg
    Mar 24 at 7:39











  • $begingroup$
    oh I misread xyz=1
    $endgroup$
    – user574848
    Mar 24 at 7:41















1












$begingroup$

Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.



Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Power means works, right?
    $endgroup$
    – user574848
    Mar 24 at 7:37










  • $begingroup$
    @user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
    $endgroup$
    – Michael Rozenberg
    Mar 24 at 7:39











  • $begingroup$
    oh I misread xyz=1
    $endgroup$
    – user574848
    Mar 24 at 7:41













1












1








1





$begingroup$

Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.



Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?






share|cite|improve this answer









$endgroup$



Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.



Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 23 at 17:53









Michael RozenbergMichael Rozenberg

110k1896201




110k1896201











  • $begingroup$
    Power means works, right?
    $endgroup$
    – user574848
    Mar 24 at 7:37










  • $begingroup$
    @user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
    $endgroup$
    – Michael Rozenberg
    Mar 24 at 7:39











  • $begingroup$
    oh I misread xyz=1
    $endgroup$
    – user574848
    Mar 24 at 7:41
















  • $begingroup$
    Power means works, right?
    $endgroup$
    – user574848
    Mar 24 at 7:37










  • $begingroup$
    @user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
    $endgroup$
    – Michael Rozenberg
    Mar 24 at 7:39











  • $begingroup$
    oh I misread xyz=1
    $endgroup$
    – user574848
    Mar 24 at 7:41















$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37




$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37












$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39





$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39













$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41




$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41



Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers