Prove that $sum_cycfraca^2ca^2 + 2c^2 ge 1$ [duplicate] The 2019 Stack Overflow Developer Survey Results Are InHow prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$How prove this inequality $sumlimits_cycfraca^3b+c+dge dfrac13$,if $sumlimits_cycasqrtbcge 1$If $x+y+z=3$, then $sum_textcycfracx^22y^2-y+3gefrac34$Prove $sumlimits_textcycfracaa+(n-1)bgeq 1$To prove $sum_cycfrac1a^3+b^3+abc le frac1abc$If $a+b+c = 3$ show $9 + 3 sum_mboxcycacosleft( frac2bcright)geq 2left( sum_mboxcycacosleft( fracbcright) right)^2$show $sum_cyc(1-x)^2ge sum_cycfracz^2(1-x^2)(1-y^2)(xy+z)^2.$Inequality : $sum_cycfracsqrta^3c2sqrtb^3a+3bcgeq frac35$If $ab+bc+ca=3$ for non-negative $a$, $b$, $c$, show that $sum_cyca^2b^2+sum_cycfrac12a^2b^2c^2(a+b)^2ge 12abc$$a,b,c>0$ and $abc=1$; prove $sum_cycfrac1(b+1)^2+frac1a+b+c+1ge1$Prove that $sum_cycdfracaa + b^4 + c^4 le 1$ where $abc = 1$.
What is the most effective way of iterating a std::vector and why?
Deal with toxic manager when you can't quit
Falsification in Math vs Science
What is the accessibility of a package's `Private` context variables?
Loose spokes after only a few rides
Apparent duplicates between Haynes service instructions and MOT
How to deal with fear of taking dependencies
How to manage monthly salary
Does a dangling wire really electrocute me if I'm standing in water?
Protecting Dualbooting Windows from dangerous code (like rm -rf)
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
How can I autofill dates in Excel excluding Sunday?
For what reasons would an animal species NOT cross a *horizontal* land bridge?
Can we generate random numbers using irrational numbers like π and e?
Button changing it's text & action. Good or terrible?
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Worn-tile Scrabble
Lightning Grid - Columns and Rows?
Why can Shazam fly?
Where to refill my bottle in India?
Is three citations per paragraph excessive for undergraduate research paper?
What is the meaning of the verb "bear" in this context?
What is the motivation for a law requiring 2 parties to consent for recording a conversation
Prove that $sum_cycfraca^2ca^2 + 2c^2 ge 1$ [duplicate]
The 2019 Stack Overflow Developer Survey Results Are InHow prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$How prove this inequality $sumlimits_cycfraca^3b+c+dge dfrac13$,if $sumlimits_cycasqrtbcge 1$If $x+y+z=3$, then $sum_textcycfracx^22y^2-y+3gefrac34$Prove $sumlimits_textcycfracaa+(n-1)bgeq 1$To prove $sum_cycfrac1a^3+b^3+abc le frac1abc$If $a+b+c = 3$ show $9 + 3 sum_mboxcycacosleft( frac2bcright)geq 2left( sum_mboxcycacosleft( fracbcright) right)^2$show $sum_cyc(1-x)^2ge sum_cycfracz^2(1-x^2)(1-y^2)(xy+z)^2.$Inequality : $sum_cycfracsqrta^3c2sqrtb^3a+3bcgeq frac35$If $ab+bc+ca=3$ for non-negative $a$, $b$, $c$, show that $sum_cyca^2b^2+sum_cycfrac12a^2b^2c^2(a+b)^2ge 12abc$$a,b,c>0$ and $abc=1$; prove $sum_cycfrac1(b+1)^2+frac1a+b+c+1ge1$Prove that $sum_cycdfracaa + b^4 + c^4 le 1$ where $abc = 1$.
$begingroup$
This question already has an answer here:
How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
1 answer
$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$
Here's what I did. My stupidity has reached a spiritual level.
We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.
$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$
$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$
$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$
$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$
I am done with my life.
inequality substitution cauchy-schwarz-inequality
$endgroup$
marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
1 answer
$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$
Here's what I did. My stupidity has reached a spiritual level.
We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.
$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$
$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$
$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$
$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$
I am done with my life.
inequality substitution cauchy-schwarz-inequality
$endgroup$
marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34
6
$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46
add a comment |
$begingroup$
This question already has an answer here:
How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
1 answer
$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$
Here's what I did. My stupidity has reached a spiritual level.
We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.
$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$
$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$
$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$
$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$
I am done with my life.
inequality substitution cauchy-schwarz-inequality
$endgroup$
This question already has an answer here:
How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
1 answer
$a$, $b$ and $c$ are positives such that $ab + bc + ca = 3abc$. Prove that $$ sum_cycfraca^2ca^2 + 2c^2 ge 1$$
Here's what I did. My stupidity has reached a spiritual level.
We have that $ab + bc + ca = 3abc implies dfrac1a + dfrac1b + dfrac1c = 3$.
$$sum_cycdfraca^2ca^2 + 2c^2 = sum_cycdfrac1cleft(1 - dfrac2ca^2 + 2cright) ge sum_cycdfrac1cleft(1 - dfrac2c2c + 2a - 1right)$$
$$ = left(dfrac1a + dfrac1b + dfrac1cright) - 2sum_cycdfrac12c + 2a - 1 ge 3 - dfrac29sum_cycleft(dfrac1c + dfrac1a + dfrac1c + a - 1right)$$
$$ = 3 - dfrac49left(dfrac1a + dfrac1b + dfrac1cright) - dfrac29sum_cycdfrac1c + a - 1 ge 3 - dfrac43 - dfrac118sum_cycleft(dfrac1c - frac12 + dfrac1a - frac12right)$$
$$ = dfrac53 - dfrac29left(dfrac12a - 1 + dfrac12b - 1 + dfrac12c -1right)$$
I am done with my life.
This question already has an answer here:
How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
1 answer
inequality substitution cauchy-schwarz-inequality
inequality substitution cauchy-schwarz-inequality
edited Mar 23 at 18:08
StubbornAtom
6,37831440
6,37831440
asked Mar 23 at 17:29
Lê Thành ĐạtLê Thành Đạt
47313
47313
marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Shailesh, uniquesolution, GNUSupporter 8964民主女神 地下教會, Song, YiFan Mar 24 at 13:26
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34
6
$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46
add a comment |
1
$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34
6
$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46
1
1
$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34
$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34
6
6
$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46
$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.
Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?
$endgroup$
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.
Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?
$endgroup$
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
add a comment |
$begingroup$
Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.
Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?
$endgroup$
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
add a comment |
$begingroup$
Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.
Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?
$endgroup$
Let $frac1a=x$, $frac1b=y$ and $frac1c=z$.
Thus, $x+y+z=3$ and by C-S we obtain:
$$sum_cycfraca^2ca^2+2c^2=sum_cycfracz^22x^2+z=sum_cycfracz^42x^2z^2+z^3geqfrac(x^2+y^2+z^2)^2sumlimits_cyc(2x^2y^2+x^3).$$
Id est, it's enough to prove that
$$(x^2+y^2+z^2)^2geqsumlimits_cyc(2x^2y^2+x^3)$$ or
$$x^4+y^4+z^4geq x^3+y^3+z^3.$$
Can you end it now?
answered Mar 23 at 17:53
Michael RozenbergMichael Rozenberg
110k1896201
110k1896201
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
add a comment |
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
Power means works, right?
$endgroup$
– user574848
Mar 24 at 7:37
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
@user574848 No. It's just Chebyshov. Also, Muirhead helps and there are more ways to the proof.For example: $sumlimits_cyc(x^4-x^3)=sumlimits_cyc(x^4-x^3-x+1)=sumlimits_cyc(x-1)^2(x^2+x+1)geq0.$
$endgroup$
– Michael Rozenberg
Mar 24 at 7:39
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
$begingroup$
oh I misread xyz=1
$endgroup$
– user574848
Mar 24 at 7:41
add a comment |
1
$begingroup$
is this $$fraca^2ca^2+2c^2+fracb^2ab^2+2a^2+fracc^2bc^2+2b^2geq 1$$?
$endgroup$
– Dr. Sonnhard Graubner
Mar 23 at 17:34
6
$begingroup$
Let $(1/a;1/b;1/c)->(x;y;z)$ Possible duplicate of How prove $fraca^2a+2b^2+fracb^2b+2c^2+fracc^2c+2a^2ge 1$
$endgroup$
– Word Shallow
Mar 24 at 2:46