Regularized meshless method Contents Description History and recent development See also References Navigation menuA meshfree, exponential convergence, integration-free, and boundary-only RBF techniqueArchivedNumerical convergence of boundary knot method in the analysis of Helmholtz, modified Helmholtz, and convection-diffusion problemsArchivedA method of fundamental solutions without fictitious boundaryArchivedRegularized meshless method for nonhomogeneous problemsArchivedAn investigation on the regularized meshless method for irregular domain problemse

Forward-time central-spaceCrank–NicolsonLax–FriedrichsLax–WendroffMacCormackUpwindMethod of characteristicsAlternating direction-implicitFinite-difference time-domainhp-FEMExtendedDiscontinuous GalerkinSpectral elementMortarGradient discretisationLoubignac iterationSmoothedSchur complementFictitious domainSchwarz alternatingadditiveabstract additiveNeumann–DirichletNeumann–NeumannPoincaré–Steklov operatorBalancingBalancing by constraintsTearing and interconnectFETI-DP


Numerical analysisNumerical differential equations


partial differential equationsfundamental solutioncollocation methodinverse problemsdouble layer potentialsmethod of fundamental solutionsfinite element methodfinite difference methodfinite volume methodboundary element methodboundary knot methodsingular boundary method




In numerical mathematics, the regularized meshless method (RMM), also known as the singular meshless method or desingularized meshless method, is a meshless boundary collocation method designed to solve certain partial differential equations whose fundamental solution is explicitly known. The RMM is a strong-form collocation method with merits being meshless, integration-free, easy-to-implement, and high stability. Until now this method has been successfully applied to some typical problems, such as potential, acoustics, water wave, and inverse problems of bounded and unbounded domains.




Contents





  • 1 Description


  • 2 History and recent development


  • 3 See also


  • 4 References




Description


The RMM employs the double layer potentials from the potential theory as its basis/kernel functions. Like the method of fundamental solutions (MFS),[1][2] the numerical solution is approximated by a linear combination of double layer kernel functions with respect to different source points. Unlike the MFS, the collocation and source points of the RMM, however, are coincident and placed on the physical boundary without the need of a fictitious boundary in the MFS. Thus, the RMM overcomes the major bottleneck in the MFS applications to the real world problems.


Upon the coincidence of the collocation and source points, the double layer kernel functions will present various orders of singularity. Thus, a subtracting and adding-back regularizing technique [3] is introduced and, hence, removes or cancels such singularities.



History and recent development


These days the finite element method (FEM), finite difference method (FDM), finite volume method (FVM), and boundary element method (BEM) are dominant numerical techniques in numerical modelings of many fields of engineering and sciences. Mesh generation is tedious and even very challenging problems in their solution of high-dimensional moving or complex-shaped boundary problems and is computationally costly and often mathematically troublesome.


The BEM has long been claimed to alleviate such drawbacks thanks to the boundary-only discretizations and its semi-analytical nature. Despite these merits, the BEM, however, involves quite sophisticated mathematics and some tricky singular integrals. Moreover, surface meshing in a three-dimensional domain remains to be a nontrivial task. Over the past decades, considerable efforts have been devoted to alleviating or eliminating these difficulties, leading to the development of meshless/meshfree boundary collocation methods which require neither domain nor boundary meshing. Among these methods, the MFS is the most popular with the merit of easy programming, mathematical simplicity, high accuracy, and fast convergence.


In the MFS, a fictitious boundary outside the problem domain is required in order to avoid the singularity of the fundamental solution. However, determining the optimal location of the fictitious boundary is a nontrivial task to be studied. Dramatic efforts have ever since been made to remove this long perplexing issue. Recent advances include, for example, boundary knot method (BKM),[4][5] regularized meshless method (RMM),[3] modified MFS (MMFS),[6] and singular boundary method (SBM) [7]


The methodology of the RMM was firstly proposed by Young and his collaborators in 2005. The key idea is to introduce a subtracting and adding-back regularizing technique to remove the singularity of the double layer kernel function at the origin, so that the source points can be placed directly on the real boundary. Up to now, the RMM has successfully been applied to a variety of physical problems, such as potential,[3] exterior acoustics [8] antiplane piezo-electricity,[9] acoustic eigenproblem with multiply-connected domain,[10] inverse problem,[11] possion’ equation [12] and water wave problems.[13] Furthermore, some improved formulations have been made aiming to further improve the feasibility and efficiency of this method, see, for example, the weighted RMM for irregular domain problems [14] and analytical RMM for 2D Laplace problems.[15]



See also


  • Radial basis function

  • Boundary element method

  • Method of fundamental solutions

  • Boundary knot method

  • Boundary particle method

  • Singular boundary method


References




  1. ^ A.K. G. Fairweather, The method of fundamental solutions for elliptic boundary value problems, Advances in Computational Mathematics. 9 (1998) 69–95.


  2. ^ M.A. Golberg, C.S. Chen, The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations, Boundary Elements Communications. 5 (1994) 57–61.


  3. ^ abc D.L. Young, K.H. Chen, C.W. Lee. Novel meshless method for solving the potential problems with arbitrary domains. Journal of Computational Physics 2005; 209(1): 290–321.


  4. ^ W. Chen and M. Tanaka, "A meshfree, exponential convergence, integration-free, and boundary-only RBF technique Archived 2016-03-04 at the Wayback Machine", Computers and Mathematics with Applications, 43, 379–391, 2002.


  5. ^ W. Chen and Y.C. Hon, "Numerical convergence of boundary knot method in the analysis of Helmholtz, modified Helmholtz, and convection-diffusion problems Archived 2015-06-20 at the Wayback Machine", Computer Methods in Applied Mechanics and Engineering, 192, 1859–1875, 2003.


  6. ^ B. Sarler, "Solution of potential flow problems by the modified method of fundamental solutions: Formulations with the single layer and the double layer fundamental solutions", Eng Anal Bound Elem 2009;33(12): 1374–82.


  7. ^ W. Chen, F.Z. Wang, "A method of fundamental solutions without fictitious boundary Archived 2015-06-06 at the Wayback Machine", Eng Anal Bound Elem 2010;34(5): 530–32.


  8. ^ D.L. Young, K.H. Chen, C.W. Lee. Singular meshless method using double layer potentials for exterior acoustics.Journal of the Acoustical Society of America 2006;119(1):96–107.


  9. ^ K.H. Chen, J.H. Kao, J.T. Chen. Regularized meshless method for antiplane piezo- electricity problems with multiple inclusions. Computers, Materials, & Con- tinua 2009;9(3):253–79.


  10. ^ K.H. Chen, J.T. Chen, J.H. Kao. Regularized meshless method for solving acoustic eigenproblem with multiply-connected domain. Computer Modeling in Engineering & Sciences 2006;16(1):27–39.


  11. ^ K.H. Chen, J.H. Kao, J.T. Chen, K.L. Wu. Desingularized meshless method for solving Laplace equation with over-specified boundary conditions using regularization techniques. Computational Mechanics 2009;43:827–37


  12. ^ W. Chen, J. Lin, F.Z. Wang, "Regularized meshless method for nonhomogeneous problems Archived 2015-06-06 at the Wayback Machine", Eng. Anal. Bound. Elem. 35 (2011) 253–257.


  13. ^ K.H. Chen, M.C. Lu, H.M. Hsu, Regularized meshless method analysis of the problem of obliquely incident water wave, Eng. Anal. Bound. Elem. 35 (2011) 355–362.


  14. ^ R.C. Song, W. Chen,"An investigation on the regularized meshless method for irregular domain problems[permanent dead link]", CMES-Comput. Model. Eng. Sci. 42 (2009) 59–70.


  15. ^ W. Chen, R.C. Song, Analytical diagonal elements of regularized meshless method for regular domains of 2D Dirichlet Laplace problems, Eng. Anal. Bound. Elem. 34 (2010) 2–8.









Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers