Find the Primitive Roots $mod 31$ The 2019 Stack Overflow Developer Survey Results Are InFinding a primitive root of a prime numberExactly $phi(phi(n))$ primitive roots modulo $n$What does “maximum order elements to mod n” mean for a number n without primitive roots modulo n?Number Theory: Modular Arithmetic Orders and Primitive RootsHow to find complete set of incongruent primitive roots mod 17Probability of Primitive Root (Mod 43)Primitive Roots mod a prime numberFind all primitive 8th roots of unity modulo 41.Primitive Roots and their ordersprimitive roots modulo 125Use primitive root to prove if $a^phi(m)/2equiv 1pmod m$ then $a$ is a quadratic residue modulo $m$.

What did it mean to "align" a radio?

Are there incongruent pythagorean triangles with the same perimeter and same area?

Shouldn't "much" here be used instead of "more"?

How technical should a Scrum Master be to effectively remove impediments?

One word riddle: Vowel in the middle

Is a "Democratic" Oligarchy-Style System Possible?

How come people say “Would of”?

Can you compress metal and what would be the consequences?

What is the meaning of the verb "bear" in this context?

Why do we hear so much about the Trump administration deciding to impose and then remove tariffs?

Is this app Icon Browser Safe/Legit?

Protecting Dualbooting Windows from dangerous code (like rm -rf)

A poker game description that does not feel gimmicky

What is the most effective way of iterating a std::vector and why?

Why can Shazam fly?

How to deal with fear of taking dependencies

Does the shape of a die affect the probability of a number being rolled?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

Earliest use of the term "Galois extension"?

Output the Arecibo Message

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

Can a flute soloist sit?

Have you ever entered Singapore using a different passport or name?

Do these rules for Critical Successes and Critical Failures seem Fair?



Find the Primitive Roots $mod 31$



The 2019 Stack Overflow Developer Survey Results Are InFinding a primitive root of a prime numberExactly $phi(phi(n))$ primitive roots modulo $n$What does “maximum order elements to mod n” mean for a number n without primitive roots modulo n?Number Theory: Modular Arithmetic Orders and Primitive RootsHow to find complete set of incongruent primitive roots mod 17Probability of Primitive Root (Mod 43)Primitive Roots mod a prime numberFind all primitive 8th roots of unity modulo 41.Primitive Roots and their ordersprimitive roots modulo 125Use primitive root to prove if $a^phi(m)/2equiv 1pmod m$ then $a$ is a quadratic residue modulo $m$.










2












$begingroup$


My approach:



There exist $phi(31-1) = phi(30) = 8$ primitive roots.



If $x^6 notequiv 1$,$x^10 notequiv 1$, and $x^15 notequiv 1$, then $x$ is a primitive root modulo $31$.



$x = 1, 2$ fails this but $x = 3$ passes this, thus $3$ is a primitive root.



I then know that $3^0, 3^1, 3^2, dots, 3^29$ is a residue system mod $31$.



How can I then determine which elements are the primitive roots of this set?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Well, $g=3^2$ isn't a primitive root because $gcd(2,30)=2$ and $g^15=1$, noting that $15=frac 302$. Do you see the pattern?
    $endgroup$
    – lulu
    Mar 23 at 16:57










  • $begingroup$
    Phrased differently, you say that you know that there are $varphi(30)=8$ primitive roots. How do you know that? The proof of that tells you how to find all the others, given one.
    $endgroup$
    – lulu
    Mar 23 at 16:58















2












$begingroup$


My approach:



There exist $phi(31-1) = phi(30) = 8$ primitive roots.



If $x^6 notequiv 1$,$x^10 notequiv 1$, and $x^15 notequiv 1$, then $x$ is a primitive root modulo $31$.



$x = 1, 2$ fails this but $x = 3$ passes this, thus $3$ is a primitive root.



I then know that $3^0, 3^1, 3^2, dots, 3^29$ is a residue system mod $31$.



How can I then determine which elements are the primitive roots of this set?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Well, $g=3^2$ isn't a primitive root because $gcd(2,30)=2$ and $g^15=1$, noting that $15=frac 302$. Do you see the pattern?
    $endgroup$
    – lulu
    Mar 23 at 16:57










  • $begingroup$
    Phrased differently, you say that you know that there are $varphi(30)=8$ primitive roots. How do you know that? The proof of that tells you how to find all the others, given one.
    $endgroup$
    – lulu
    Mar 23 at 16:58













2












2








2





$begingroup$


My approach:



There exist $phi(31-1) = phi(30) = 8$ primitive roots.



If $x^6 notequiv 1$,$x^10 notequiv 1$, and $x^15 notequiv 1$, then $x$ is a primitive root modulo $31$.



$x = 1, 2$ fails this but $x = 3$ passes this, thus $3$ is a primitive root.



I then know that $3^0, 3^1, 3^2, dots, 3^29$ is a residue system mod $31$.



How can I then determine which elements are the primitive roots of this set?










share|cite|improve this question











$endgroup$




My approach:



There exist $phi(31-1) = phi(30) = 8$ primitive roots.



If $x^6 notequiv 1$,$x^10 notequiv 1$, and $x^15 notequiv 1$, then $x$ is a primitive root modulo $31$.



$x = 1, 2$ fails this but $x = 3$ passes this, thus $3$ is a primitive root.



I then know that $3^0, 3^1, 3^2, dots, 3^29$ is a residue system mod $31$.



How can I then determine which elements are the primitive roots of this set?







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 23 at 21:47









Asaf Karagila

308k33441775




308k33441775










asked Mar 23 at 16:48









Bryden CBryden C

32619




32619











  • $begingroup$
    Well, $g=3^2$ isn't a primitive root because $gcd(2,30)=2$ and $g^15=1$, noting that $15=frac 302$. Do you see the pattern?
    $endgroup$
    – lulu
    Mar 23 at 16:57










  • $begingroup$
    Phrased differently, you say that you know that there are $varphi(30)=8$ primitive roots. How do you know that? The proof of that tells you how to find all the others, given one.
    $endgroup$
    – lulu
    Mar 23 at 16:58
















  • $begingroup$
    Well, $g=3^2$ isn't a primitive root because $gcd(2,30)=2$ and $g^15=1$, noting that $15=frac 302$. Do you see the pattern?
    $endgroup$
    – lulu
    Mar 23 at 16:57










  • $begingroup$
    Phrased differently, you say that you know that there are $varphi(30)=8$ primitive roots. How do you know that? The proof of that tells you how to find all the others, given one.
    $endgroup$
    – lulu
    Mar 23 at 16:58















$begingroup$
Well, $g=3^2$ isn't a primitive root because $gcd(2,30)=2$ and $g^15=1$, noting that $15=frac 302$. Do you see the pattern?
$endgroup$
– lulu
Mar 23 at 16:57




$begingroup$
Well, $g=3^2$ isn't a primitive root because $gcd(2,30)=2$ and $g^15=1$, noting that $15=frac 302$. Do you see the pattern?
$endgroup$
– lulu
Mar 23 at 16:57












$begingroup$
Phrased differently, you say that you know that there are $varphi(30)=8$ primitive roots. How do you know that? The proof of that tells you how to find all the others, given one.
$endgroup$
– lulu
Mar 23 at 16:58




$begingroup$
Phrased differently, you say that you know that there are $varphi(30)=8$ primitive roots. How do you know that? The proof of that tells you how to find all the others, given one.
$endgroup$
– lulu
Mar 23 at 16:58










3 Answers
3






active

oldest

votes


















3












$begingroup$

There are indeed $phi(phi (31))=8$ primitive roots modulo $31$ and you can find them as described here:



Finding a primitive root of a prime number



For example, $3^kequiv 1bmod 31$ only holds for $k=30$, if $1le kle 30$. Hence $3$ is a primitive root modulo $31$. Now compute the orders of powers of $3$.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Once you found one primitive root, the others are its powers which are relatively prime to $phi(31)=30$. The numbers in $0,1,2,...,29$ which are relatively prime to $30$ are $1,7,11,13,17,19,23,29$ and hence the primitive roots are $3,3^7,3^11,...,3^29$.



    The reason why this is the case is the general formula $ord_n(a^k)=fracord_n(a)gcd(k,ord_n(a))$.






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$


      I then know that $3^0,3^1,3^2,…,3^29$ is a residue system $mod 31$.




      And you are sooo close.



      $(3^k)^m = 3^mk$. So for $3^k$ to be a primitive root we need $mk$ to not be a multiple of $30$ for any natural $m < 30$.



      In other words if $k$ is relatively prime to $30$.



      In fact, that is precisely why we know there are $phi(30)$ primitive roots.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159551%2ffind-the-primitive-roots-mod-31%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        There are indeed $phi(phi (31))=8$ primitive roots modulo $31$ and you can find them as described here:



        Finding a primitive root of a prime number



        For example, $3^kequiv 1bmod 31$ only holds for $k=30$, if $1le kle 30$. Hence $3$ is a primitive root modulo $31$. Now compute the orders of powers of $3$.






        share|cite|improve this answer









        $endgroup$

















          3












          $begingroup$

          There are indeed $phi(phi (31))=8$ primitive roots modulo $31$ and you can find them as described here:



          Finding a primitive root of a prime number



          For example, $3^kequiv 1bmod 31$ only holds for $k=30$, if $1le kle 30$. Hence $3$ is a primitive root modulo $31$. Now compute the orders of powers of $3$.






          share|cite|improve this answer









          $endgroup$















            3












            3








            3





            $begingroup$

            There are indeed $phi(phi (31))=8$ primitive roots modulo $31$ and you can find them as described here:



            Finding a primitive root of a prime number



            For example, $3^kequiv 1bmod 31$ only holds for $k=30$, if $1le kle 30$. Hence $3$ is a primitive root modulo $31$. Now compute the orders of powers of $3$.






            share|cite|improve this answer









            $endgroup$



            There are indeed $phi(phi (31))=8$ primitive roots modulo $31$ and you can find them as described here:



            Finding a primitive root of a prime number



            For example, $3^kequiv 1bmod 31$ only holds for $k=30$, if $1le kle 30$. Hence $3$ is a primitive root modulo $31$. Now compute the orders of powers of $3$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 23 at 16:57









            Dietrich BurdeDietrich Burde

            81.9k649107




            81.9k649107





















                2












                $begingroup$

                Once you found one primitive root, the others are its powers which are relatively prime to $phi(31)=30$. The numbers in $0,1,2,...,29$ which are relatively prime to $30$ are $1,7,11,13,17,19,23,29$ and hence the primitive roots are $3,3^7,3^11,...,3^29$.



                The reason why this is the case is the general formula $ord_n(a^k)=fracord_n(a)gcd(k,ord_n(a))$.






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Once you found one primitive root, the others are its powers which are relatively prime to $phi(31)=30$. The numbers in $0,1,2,...,29$ which are relatively prime to $30$ are $1,7,11,13,17,19,23,29$ and hence the primitive roots are $3,3^7,3^11,...,3^29$.



                  The reason why this is the case is the general formula $ord_n(a^k)=fracord_n(a)gcd(k,ord_n(a))$.






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Once you found one primitive root, the others are its powers which are relatively prime to $phi(31)=30$. The numbers in $0,1,2,...,29$ which are relatively prime to $30$ are $1,7,11,13,17,19,23,29$ and hence the primitive roots are $3,3^7,3^11,...,3^29$.



                    The reason why this is the case is the general formula $ord_n(a^k)=fracord_n(a)gcd(k,ord_n(a))$.






                    share|cite|improve this answer









                    $endgroup$



                    Once you found one primitive root, the others are its powers which are relatively prime to $phi(31)=30$. The numbers in $0,1,2,...,29$ which are relatively prime to $30$ are $1,7,11,13,17,19,23,29$ and hence the primitive roots are $3,3^7,3^11,...,3^29$.



                    The reason why this is the case is the general formula $ord_n(a^k)=fracord_n(a)gcd(k,ord_n(a))$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 23 at 16:57









                    MarkMark

                    10.5k1622




                    10.5k1622





















                        2












                        $begingroup$


                        I then know that $3^0,3^1,3^2,…,3^29$ is a residue system $mod 31$.




                        And you are sooo close.



                        $(3^k)^m = 3^mk$. So for $3^k$ to be a primitive root we need $mk$ to not be a multiple of $30$ for any natural $m < 30$.



                        In other words if $k$ is relatively prime to $30$.



                        In fact, that is precisely why we know there are $phi(30)$ primitive roots.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$


                          I then know that $3^0,3^1,3^2,…,3^29$ is a residue system $mod 31$.




                          And you are sooo close.



                          $(3^k)^m = 3^mk$. So for $3^k$ to be a primitive root we need $mk$ to not be a multiple of $30$ for any natural $m < 30$.



                          In other words if $k$ is relatively prime to $30$.



                          In fact, that is precisely why we know there are $phi(30)$ primitive roots.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$


                            I then know that $3^0,3^1,3^2,…,3^29$ is a residue system $mod 31$.




                            And you are sooo close.



                            $(3^k)^m = 3^mk$. So for $3^k$ to be a primitive root we need $mk$ to not be a multiple of $30$ for any natural $m < 30$.



                            In other words if $k$ is relatively prime to $30$.



                            In fact, that is precisely why we know there are $phi(30)$ primitive roots.






                            share|cite|improve this answer









                            $endgroup$




                            I then know that $3^0,3^1,3^2,…,3^29$ is a residue system $mod 31$.




                            And you are sooo close.



                            $(3^k)^m = 3^mk$. So for $3^k$ to be a primitive root we need $mk$ to not be a multiple of $30$ for any natural $m < 30$.



                            In other words if $k$ is relatively prime to $30$.



                            In fact, that is precisely why we know there are $phi(30)$ primitive roots.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 23 at 17:31









                            fleabloodfleablood

                            74k22891




                            74k22891



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159551%2ffind-the-primitive-roots-mod-31%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                                random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                                Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye