Orthotropic material Contents Orthotropy in physics Orthotropy in linear elasticity See also References Further reading Navigation menu10.1177/108128659600100302Orthotropy modeling equationsHooke's law for orthotropic materials
Continuum mechanicsMaterials
material sciencesolid mechanicsorthogonalrotational symmetryanisotropic materialswoodcoordinate systemHankinson's equationsheet metalgrain structureanisotropicinhomogeneityanisotropic materialsisotropicgrainsconstitutive relationstensorvectorsorthonormalcoordinate systemSummation over repeated indicesorthogonal transformationorthogonalsymmetry planeslinear elasticitystressstrainHooke's lawtensorstiffness tensororthonormalcoordinate systemsymmetricstrain energy density functionVoigt notationstiffness matrixpoint symmetryorthogonal transformationpointaxisplaneorthogonalsymmetry planesYoung's modulusshear modulusPoisson's ratiosymmetricpositive definitestrain energy densitySylvester's criterionminorssubmatrix
In material science and solid mechanics, orthotropic materials have material properties that differ along three mutually-orthogonal twofold axes of rotational symmetry. They are a subset of anisotropic materials, because their properties change when measured from different directions.
A familiar example of an orthotropic material is wood. In wood, one can define three mutually perpendicular directions at each point in which the properties are different. These are the axial direction (along the grain), the radial direction, and the circumferential direction. Because the preferred coordinate system is cylindrical-polar, this type of orthotropy is also called polar orthotropy. Mechanical properties, such as strength and stiffness, measured axially (along the grain) are typically better than those measured in the radial and circumferential directions (across the grain). These directional differences in strength can be quantified with Hankinson's equation.
Another example of an orthotropic material is sheet metal formed by squeezing thick sections of metal between heavy rollers. This flattens and stretches its grain structure. As a result, the material becomes anisotropic—its properties differ between the direction it was rolled in and each of the two transverse directions.
If orthotropic properties vary between points inside an object, it possesses both orthotropy and inhomogeneity. This suggests that orthotropy is the property of a point within an object rather than for the object as a whole (unless the object is homogeneous). The associated planes of symmetry are also defined for a small region around a point and do not necessarily have to be identical to the planes of symmetry of the whole object.
Orthotropic materials are a subset of anisotropic materials; their properties depend on the direction in which they are measured. Orthotropic materials have three planes/axes of symmetry. An isotropic material, in contrast, has the same properties in every direction. It can be proved that a material having two planes of symmetry must have a third one. Isotropic materials have an infinite number of planes of symmetry.
Transversely isotropic materials are special orthotropic materials that have one axis of symmetry (any other pair of axes that are perpendicular to the main one and orthogonal among themselves are also axes of symmetry). One common example of transversely isotropic material with one axis of symmetry is a polymer reinforced by parallel glass or graphite fibers. The strength and stiffness of such a composite material will usually be greater in a direction parallel to the fibers than in the transverse direction, and the thickness direction usually has properties similar to the transverse direction. Another example would be a biological membrane, in which the properties in the plane of the membrane will be different from those in the perpendicular direction. Orthotropic material properties have been shown to provide a more accurate representation of bone's elastic symmetry and can also give information about the three-dimensional directionality of bone's tissue-level material properties.[1]
It is important to keep in mind that a material which is anisotropic on one length scale may be isotropic on another (usually larger) length scale. For instance, most metals are polycrystalline with very small grains. Each of the individual grains may be anisotropic, but if the material as a whole comprises many randomly oriented grains, then its measured mechanical properties will be an average of the properties over all possible orientations of the individual grains.
Contents
1 Orthotropy in physics
1.1 Anisotropic material relations
1.2 Condition for material symmetry
1.3 Orthotropic material properties
2 Orthotropy in linear elasticity
2.1 Anisotropic elasticity
2.2 Condition for material symmetry
2.3 Stiffness and compliance matrices in orthotropic elasticity
2.4 Bounds on the moduli of orthotropic elastic materials
3 See also
4 References
5 Further reading
Orthotropy in physics
Anisotropic material relations
Material behavior is represented in physical theories by constitutive relations. A large class of physical behaviors can be represented by linear material models that take the form of a second-order tensor. The material tensor provides a relation between two vectors and can be written as
- f=K⋅ddisplaystyle mathbf f =boldsymbol Kcdot mathbf d
where d,fdisplaystyle mathbf d ,mathbf f are two vectors representing physical quantities and Kdisplaystyle boldsymbol K is the second-order material tensor. If we express the above equation in terms of components with respect to an orthonormal coordinate system, we can write
- fi=Kij dj .displaystyle f_i=K_ij~d_j~.
Summation over repeated indices has been assumed in the above relation. In matrix form we have
- f_=K__ d_⟹[f1f2f3]=[K11K12K13K21K22K23K31K32K33][d1d2d3]displaystyle underline mathbf f =underline underline boldsymbol K~underline mathbf d implies beginbmatrixf_1\f_2\f_3endbmatrix=beginbmatrixK_11&K_12&K_13\K_21&K_22&K_23\K_31&K_32&K_33endbmatrixbeginbmatrixd_1\d_2\d_3endbmatrix
Examples of physical problems that fit the above template are listed in the table below.[2]
Problem | fdisplaystyle mathbf f | ddisplaystyle mathbf d | Kdisplaystyle boldsymbol K |
---|---|---|---|
Electrical conduction | Electrical current Jdisplaystyle mathbf J | Electric field Edisplaystyle mathbf E | Electrical conductivity σdisplaystyle boldsymbol sigma |
Dielectrics | Electrical displacement Ddisplaystyle mathbf D | Electric field Edisplaystyle mathbf E | Electric permittivity εdisplaystyle boldsymbol varepsilon |
Magnetism | Magnetic induction Bdisplaystyle mathbf B | Magnetic field Hdisplaystyle mathbf H | Magnetic permeability μdisplaystyle boldsymbol mu |
Thermal conduction | Heat flux qdisplaystyle mathbf q | Temperature gradient −∇Tdisplaystyle -boldsymbol nabla T | Thermal conductivity κdisplaystyle boldsymbol kappa |
Diffusion | Particle flux Jdisplaystyle mathbf J | Concentration gradient −∇cdisplaystyle -boldsymbol nabla c | Diffusivity Ddisplaystyle boldsymbol D |
Flow in porous media | Weighted fluid velocity ημvdisplaystyle eta _mu mathbf v | Pressure gradient ∇Pdisplaystyle boldsymbol nabla P | Fluid permeability κdisplaystyle boldsymbol kappa |
Condition for material symmetry
The material matrix K__displaystyle underline underline boldsymbol K has a symmetry with respect to a given orthogonal transformation (Adisplaystyle boldsymbol A) if it does not change when subjected to that transformation.
For invariance of the material properties under such a transformation we require
- A⋅f=K⋅(A⋅d)⟹f=(A−1⋅K⋅A)⋅ddisplaystyle boldsymbol Acdot mathbf f =boldsymbol Kcdot (boldsymbol Acdot boldsymbol d)implies mathbf f =(boldsymbol A^-1cdot boldsymbol Kcdot boldsymbol A)cdot boldsymbol d
Hence the condition for material symmetry is (using the definition of an orthogonal transformation)
- K=A−1⋅K⋅A=AT⋅K⋅Adisplaystyle boldsymbol K=boldsymbol A^-1cdot boldsymbol Kcdot boldsymbol A=boldsymbol A^Tcdot boldsymbol Kcdot boldsymbol A
Orthogonal transformations can be represented in Cartesian coordinates by a 3×3displaystyle 3times 3 matrix A__displaystyle underline underline boldsymbol A given by
- A__=[A11A12A13A21A22A23A31A32A33] .displaystyle underline underline boldsymbol A=beginbmatrixA_11&A_12&A_13\A_21&A_22&A_23\A_31&A_32&A_33endbmatrix~.
Therefore the symmetry condition can be written in matrix form as
- K__=AT__ K__ A__displaystyle underline underline boldsymbol K=underline underline boldsymbol A^T~underline underline boldsymbol K~underline underline boldsymbol A
Orthotropic material properties
An orthotropic material has three orthogonal symmetry planes. If we choose an orthonormal coordinate system such that the axes coincide with the normals to the three symmetry planes, the transformation matrices are
- A1__=[−100010001] ; A2__=[1000−10001] ; A3__=[10001000−1]displaystyle underline underline boldsymbol A_1=beginbmatrix-1&0&0\0&1&0\0&0&1endbmatrix~;~~underline underline boldsymbol A_2=beginbmatrix1&0&0\0&-1&0\0&0&1endbmatrix~;~~underline underline boldsymbol A_3=beginbmatrix1&0&0\0&1&0\0&0&-1endbmatrix
It can be shown that if the matrix K__displaystyle underline underline boldsymbol K for a material is invariant under reflection about two orthogonal planes then it is also invariant under reflection about the third orthogonal plane.
Consider the reflection A3__displaystyle underline underline boldsymbol A_3 about the 1−2displaystyle 1-2, plane. Then we have
- K__=A3T__ K__ A3__=[K11K12−K13K21K22−K23−K31−K32K33]displaystyle underline underline boldsymbol K=underline underline boldsymbol A_3^T~underline underline boldsymbol K~underline underline boldsymbol A_3=beginbmatrixK_11&K_12&-K_13\K_21&K_22&-K_23\-K_31&-K_32&K_33endbmatrix
The above relation implies that K13=K23=K31=K32=0displaystyle K_13=K_23=K_31=K_32=0. Next consider a reflection A2__displaystyle underline underline boldsymbol A_2 about the 1−3displaystyle 1-3, plane. We then have
- K__=A2T__ K__ A2__=[K11−K120−K21K22000K33]displaystyle underline underline boldsymbol K=underline underline boldsymbol A_2^T~underline underline boldsymbol K~underline underline boldsymbol A_2=beginbmatrixK_11&-K_12&0\-K_21&K_22&0\0&0&K_33endbmatrix
That implies that K12=K21=0displaystyle K_12=K_21=0. Therefore the material properties of an orthotropic material are described by the matrix
- K__=[K11000K22000K33]displaystyle underline underline boldsymbol K=beginbmatrixK_11&0&0\0&K_22&0\0&0&K_33endbmatrix
Orthotropy in linear elasticity
Anisotropic elasticity
In linear elasticity, the relation between stress and strain depend on the type of material under consideration. This relation is known as Hooke's law. For anisotropic materials Hooke's law can be written as[3]
- σ=c⋅εdisplaystyle boldsymbol sigma =mathsf ccdot boldsymbol varepsilon
where σdisplaystyle boldsymbol sigma is the stress tensor, εdisplaystyle boldsymbol varepsilon is the strain tensor, and cdisplaystyle mathsf c is the elastic stiffness tensor. If the tensors in the above expression are described in terms of components with respect to an orthonormal coordinate system we can write
- σij=cijkℓ εkℓdisplaystyle sigma _ij=c_ijkell ~varepsilon _kell
where summation has been assumed over repeated indices. Since the stress and strain tensors are symmetric, and since the stress-strain relation in linear elasticity can be derived from a strain energy density function, the following symmetries hold for linear elastic materials
- cijkℓ=cjikℓ , cijkℓ=cijℓk , cijkℓ=ckℓij .displaystyle c_ijkell =c_jikell ~,~~c_ijkell =c_ijell k~,~~c_ijkell =c_kell ij~.
Because of the above symmetries, the stress-strain relation for linear elastic materials can be expressed in matrix form as
- [σ11σ22σ33σ23σ31σ12]=[c1111c1122c1133c1123c1131c1112c2211c2222c2233c2223c2231c2212c3311c3322c3333c3323c3331c3312c2311c2322c2333c2323c2331c2312c3111c3122c3133c3123c3131c3112c1211c1222c1233c1223c1231c1212][ε11ε22ε332ε232ε312ε12]displaystyle beginbmatrixsigma _11\sigma _22\sigma _33\sigma _23\sigma _31\sigma _12endbmatrix=beginbmatrixc_1111&c_1122&c_1133&c_1123&c_1131&c_1112\c_2211&c_2222&c_2233&c_2223&c_2231&c_2212\c_3311&c_3322&c_3333&c_3323&c_3331&c_3312\c_2311&c_2322&c_2333&c_2323&c_2331&c_2312\c_3111&c_3122&c_3133&c_3123&c_3131&c_3112\c_1211&c_1222&c_1233&c_1223&c_1231&c_1212endbmatrixbeginbmatrixvarepsilon _11\varepsilon _22\varepsilon _33\2varepsilon _23\2varepsilon _31\2varepsilon _12endbmatrix
An alternative representation in Voigt notation is
- [σ1σ2σ3σ4σ5σ6]=[C11C12C13C14C15C16C12C22C23C24C25C26C13C23C33C34C35C36C14C24C34C44C45C46C15C25C35C45C55C56C16C26C36C46C56C66][ε1ε2ε3ε4ε5ε6]displaystyle beginbmatrixsigma _1\sigma _2\sigma _3\sigma _4\sigma _5\sigma _6endbmatrix=beginbmatrixC_11&C_12&C_13&C_14&C_15&C_16\C_12&C_22&C_23&C_24&C_25&C_26\C_13&C_23&C_33&C_34&C_35&C_36\C_14&C_24&C_34&C_44&C_45&C_46\C_15&C_25&C_35&C_45&C_55&C_56\C_16&C_26&C_36&C_46&C_56&C_66endbmatrixbeginbmatrixvarepsilon _1\varepsilon _2\varepsilon _3\varepsilon _4\varepsilon _5\varepsilon _6endbmatrix
or
- σ__=C__ ε__displaystyle underline underline boldsymbol sigma =underline underline mathsf C~underline underline boldsymbol varepsilon
The stiffness matrix C__displaystyle underline underline mathsf C in the above relation satisfies point symmetry.[4]
Condition for material symmetry
The stiffness matrix C__displaystyle underline underline mathsf C satisfies a given symmetry condition if it does not change when subjected to the corresponding orthogonal transformation. The orthogonal transformation may represent symmetry with respect to a point, an axis, or a plane. Orthogonal transformations in linear elasticity include rotations and reflections, but not shape changing transformations and can be represented, in orthonormal coordinates, by a 3×3displaystyle 3times 3 matrix A__displaystyle underline underline mathbf A given by
- A__=[A11A12A13A21A22A23A31A32A33] .displaystyle underline underline mathbf A =beginbmatrixA_11&A_12&A_13\A_21&A_22&A_23\A_31&A_32&A_33endbmatrix~.
In Voigt notation, the transformation matrix for the stress tensor can be expressed as a 6×6displaystyle 6times 6 matrix Aσ__displaystyle underline underline mathsf A_sigma given by[4]
- Aσ__=[A112A122A1322A12A132A11A132A11A12A212A222A2322A22A232A21A232A21A22A312A322A3322A32A332A31A332A31A32A21A31A22A32A23A33A22A33+A23A32A21A33+A23A31A21A32+A22A31A11A31A12A32A13A33A12A33+A13A32A11A33+A13A31A11A32+A12A31A11A21A12A22A13A23A12A23+A13A22A11A23+A13A21A11A22+A12A21]displaystyle underline underline mathsf A_sigma =beginbmatrixA_11^2&A_12^2&A_13^2&2A_12A_13&2A_11A_13&2A_11A_12\A_21^2&A_22^2&A_23^2&2A_22A_23&2A_21A_23&2A_21A_22\A_31^2&A_32^2&A_33^2&2A_32A_33&2A_31A_33&2A_31A_32\A_21A_31&A_22A_32&A_23A_33&A_22A_33+A_23A_32&A_21A_33+A_23A_31&A_21A_32+A_22A_31\A_11A_31&A_12A_32&A_13A_33&A_12A_33+A_13A_32&A_11A_33+A_13A_31&A_11A_32+A_12A_31\A_11A_21&A_12A_22&A_13A_23&A_12A_23+A_13A_22&A_11A_23+A_13A_21&A_11A_22+A_12A_21endbmatrix
The transformation for the strain tensor has a slightly different form because of the choice of notation. This transformation matrix is
- Aε__=[A112A122A132A12A13A11A13A11A12A212A222A232A22A23A21A23A21A22A312A322A332A32A33A31A33A31A322A21A312A22A322A23A33A22A33+A23A32A21A33+A23A31A21A32+A22A312A11A312A12A322A13A33A12A33+A13A32A11A33+A13A31A11A32+A12A312A11A212A12A222A13A23A12A23+A13A22A11A23+A13A21A11A22+A12A21]displaystyle underline underline mathsf A_varepsilon =beginbmatrixA_11^2&A_12^2&A_13^2&A_12A_13&A_11A_13&A_11A_12\A_21^2&A_22^2&A_23^2&A_22A_23&A_21A_23&A_21A_22\A_31^2&A_32^2&A_33^2&A_32A_33&A_31A_33&A_31A_32\2A_21A_31&2A_22A_32&2A_23A_33&A_22A_33+A_23A_32&A_21A_33+A_23A_31&A_21A_32+A_22A_31\2A_11A_31&2A_12A_32&2A_13A_33&A_12A_33+A_13A_32&A_11A_33+A_13A_31&A_11A_32+A_12A_31\2A_11A_21&2A_12A_22&2A_13A_23&A_12A_23+A_13A_22&A_11A_23+A_13A_21&A_11A_22+A_12A_21endbmatrix
It can be shown that Aε__T=Aσ__−1displaystyle underline underline mathsf A_varepsilon ^T=underline underline mathsf A_sigma ^-1.
The elastic properties of a continuum are invariant under an orthogonal transformation A__displaystyle underline underline mathbf A if and only if[4]
- C__=Aε__T C__ Aε__displaystyle underline underline mathsf C=underline underline mathsf A_varepsilon ^T~underline underline mathsf C~underline underline mathsf A_varepsilon
Stiffness and compliance matrices in orthotropic elasticity
An orthotropic elastic material has three orthogonal symmetry planes. If we choose an orthonormal coordinate system such that the axes coincide with the normals to the three symmetry planes, the transformation matrices are
- A1__=[−100010001] ; A2__=[1000−10001] ; A3__=[10001000−1]displaystyle underline underline mathbf A _1=beginbmatrix-1&0&0\0&1&0\0&0&1endbmatrix~;~~underline underline mathbf A _2=beginbmatrix1&0&0\0&-1&0\0&0&1endbmatrix~;~~underline underline mathbf A _3=beginbmatrix1&0&0\0&1&0\0&0&-1endbmatrix
We can show that if the matrix C__displaystyle underline underline mathsf C for a linear elastic material is invariant under reflection about two orthogonal planes then it is also invariant under reflection about the third orthogonal plane.
If we consider the reflection A3__displaystyle underline underline mathbf A _3 about the 1−2displaystyle 1-2, plane, then we have
- Aε__=[100000010000001000000−1000000−10000001]displaystyle underline underline mathsf A_varepsilon =beginbmatrix1&0&0&0&0&0\0&1&0&0&0&0\0&0&1&0&0&0\0&0&0&-1&0&0\0&0&0&0&-1&0\0&0&0&0&0&1endbmatrix
Then the requirement C__=Aε__T C__ Aε__displaystyle underline underline mathsf C=underline underline mathsf A_varepsilon ^T~underline underline mathsf C~underline underline mathsf A_varepsilon implies that[4]
- [C11C12C13C14C15C16C12C22C23C24C25C26C13C23C33C34C35C36C14C24C34C44C45C46C15C25C35C45C55C56C16C26C36C46C56C66]=[C11C12C13−C14−C15C16C12C22C23−C24−C25C26C13C23C33−C34−C35C36−C14−C24−C34C44C45−C46−C15−C25−C35C45C55−C56C16C26C36−C46−C56C66]displaystyle beginbmatrixC_11&C_12&C_13&C_14&C_15&C_16\C_12&C_22&C_23&C_24&C_25&C_26\C_13&C_23&C_33&C_34&C_35&C_36\C_14&C_24&C_34&C_44&C_45&C_46\C_15&C_25&C_35&C_45&C_55&C_56\C_16&C_26&C_36&C_46&C_56&C_66endbmatrix=beginbmatrixC_11&C_12&C_13&-C_14&-C_15&C_16\C_12&C_22&C_23&-C_24&-C_25&C_26\C_13&C_23&C_33&-C_34&-C_35&C_36\-C_14&-C_24&-C_34&C_44&C_45&-C_46\-C_15&-C_25&-C_35&C_45&C_55&-C_56\C_16&C_26&C_36&-C_46&-C_56&C_66endbmatrix
The above requirement can be satisfied only if
- C14=C15=C24=C25=C34=C35=C46=C56=0 .displaystyle C_14=C_15=C_24=C_25=C_34=C_35=C_46=C_56=0~.
Let us next consider the reflection A2__displaystyle underline underline mathbf A _2 about the 1−3displaystyle 1-3, plane. In that case
- Aε__=[100000010000001000000−10000001000000−1]displaystyle underline underline mathsf A_varepsilon =beginbmatrix1&0&0&0&0&0\0&1&0&0&0&0\0&0&1&0&0&0\0&0&0&-1&0&0\0&0&0&0&1&0\0&0&0&0&0&-1endbmatrix
Using the invariance condition again, we get the additional requirement that
- C16=C26=C36=C45=0 .displaystyle C_16=C_26=C_36=C_45=0~.
No further information can be obtained because the reflection about third symmetry plane is not independent of reflections about the planes that we have already considered. Therefore, the stiffness matrix of an orthotropic linear elastic material can be written as
- C__=[C11C12C13000C12C22C23000C13C23C33000000C44000000C55000000C66]displaystyle underline underline mathsf C=beginbmatrixC_11&C_12&C_13&0&0&0\C_12&C_22&C_23&0&0&0\C_13&C_23&C_33&0&0&0\0&0&0&C_44&0&0\0&0&0&0&C_55&0\0&0&0&0&0&C_66endbmatrix
The inverse of this matrix is commonly written as[5]
- S__=[1E1−ν21E2−ν31E3000−ν12E11E2−ν32E3000−ν13E1−ν23E21E30000001G230000001G310000001G12]displaystyle underline underline mathsf S=beginbmatrixtfrac 1E_rm 1&-tfrac nu _rm 21E_rm 2&-tfrac nu _rm 31E_rm 3&0&0&0\-tfrac nu _rm 12E_rm 1&tfrac 1E_rm 2&-tfrac nu _rm 32E_rm 3&0&0&0\-tfrac nu _rm 13E_rm 1&-tfrac nu _rm 23E_rm 2&tfrac 1E_rm 3&0&0&0\0&0&0&tfrac 1G_rm 23&0&0\0&0&0&0&tfrac 1G_rm 31&0\0&0&0&0&0&tfrac 1G_rm 12\endbmatrix
where Eidisplaystyle E_rm i, is the Young's modulus along axis idisplaystyle i, Gijdisplaystyle G_rm ij, is the shear modulus in direction jdisplaystyle j on the plane whose normal is in direction idisplaystyle i, and νijdisplaystyle nu _rm ij, is the Poisson's ratio that corresponds to a contraction in direction jdisplaystyle j when an extension is applied in direction idisplaystyle i.
Bounds on the moduli of orthotropic elastic materials
The strain-stress relation for orthotropic linear elastic materials can be written in Voigt notation as
- ε__=S__ σ__displaystyle underline underline boldsymbol varepsilon =underline underline mathsf S~underline underline boldsymbol sigma
where the compliance matrix S__displaystyle underline underline mathsf S is given by
- S__=[S11S12S13000S12S22S23000S13S23S33000000S44000000S55000000S66]displaystyle underline underline mathsf S=beginbmatrixS_11&S_12&S_13&0&0&0\S_12&S_22&S_23&0&0&0\S_13&S_23&S_33&0&0&0\0&0&0&S_44&0&0\0&0&0&0&S_55&0\0&0&0&0&0&S_66endbmatrix
The compliance matrix is symmetric and must be positive definite for the strain energy density to be positive. This implies from Sylvester's criterion that all the principal minors of the matrix are positive,[6] i.e.,
- Δk:=det(Sk__)>0displaystyle Delta _k:=det(underline underline mathsf S_k)>0
where Sk__displaystyle underline underline mathsf S_k is the k×kdisplaystyle ktimes k principal submatrix of S__displaystyle underline underline mathsf S.
Then,
- Δ1>0⟹S11>0Δ2>0⟹S11S22−S122>0Δ3>0⟹(S11S22−S122)S33−S11S232+2S12S23S13−S22S132>0Δ4>0⟹S44Δ3>0⟹S44>0Δ5>0⟹S44S55Δ3>0⟹S55>0Δ6>0⟹S44S55S66Δ3>0⟹S66>0displaystyle beginalignedDelta _1>0&implies quad S_11>0\Delta _2>0&implies quad S_11S_22-S_12^2>0\Delta _3>0&implies quad (S_11S_22-S_12^2)S_33-S_11S_23^2+2S_12S_23S_13-S_22S_13^2>0\Delta _4>0&implies quad S_44Delta _3>0implies S_44>0\Delta _5>0&implies quad S_44S_55Delta _3>0implies S_55>0\Delta _6>0&implies quad S_44S_55S_66Delta _3>0implies S_66>0endaligned
We can show that this set of conditions implies that[7]
- S11>0 , S22>0 , S33>0 , S44>0 , S55>0 , S66>0displaystyle S_11>0~,~~S_22>0~,~~S_33>0~,~~S_44>0~,~~S_55>0~,~~S_66>0
or
- E1>0,E2>0,E3>0,G12>0,G23>0,G13>0displaystyle E_1>0,E_2>0,E_3>0,G_12>0,G_23>0,G_13>0
However, no similar lower bounds can be placed on the values of the Poisson's ratios νijdisplaystyle nu _ij.[6]
See also
- Anisotropy
- Stress (mechanics)
- Infinitesimal strain theory
- Finite strain theory
- Hooke's law
References
^ Geraldes DM et al, 2014, A comparative study of orthotropic and isotropic bone adaptation in the femur, International Journal for Numerical Methods in Biomedical Engineering, Volume 30, Issue 9, pages 873–889, DOI: 10.1002/cnm.2633, http://onlinelibrary.wiley.com/wol1/doi/10.1002/cnm.2633/full
^ Milton, G. W., 2002, The Theory of Composites, Cambridge University Press.
^ Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day Inc.
^ abcd Slawinski, M. A., 2010, Waves and Rays in Elastic Continua: 2nd Ed., World Scientific. http://samizdat.mines.edu/wavesandrays/WavesAndRays.pdf[permanent dead link]
^ Boresi, A. P, Schmidt, R. J. and Sidebottom, O. M., 1993, Advanced Mechanics of Materials, Wiley.
^ ab Ting, T. C. T. and Chen, T., 2005, Poisson's ratio for anisotropic elastic materials can have no bounds,, Q. J. Mech. Appl. Math., 58(1), pp. 73-82.
^ Ting, T. C. T. (1996), "Positive definiteness of anisotropic elastic constants", Mathematics & Mechanics of Solids, 1 (3): 301–314, doi:10.1177/108128659600100302.mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em.
Further reading
Orthotropy modeling equations from OOFEM Matlib manual section.- Hooke's law for orthotropic materials