Cover Chessboard with Domino TilesChessboard $8times8$ covered by $32$ dominoesProve or disprove a chessboard with diagonal corners removed, cannot be tiled with L shape pieces or size 2A mathematical game: moving tilesarea estimation with tilingHamiltonian path on a chessboard with prescribed endpointsPosition games: how to fill a matrix with dominos?Triangling a triangleAlgorithm to solve this grid puzzle?Why is the following problem impossible to solve?How many valid mazes of some size are there?Maximum Area Covered by an S-Shaped Tiling

How to get directions in deep space?

Are hand made posters acceptable in Academia?

Should a narrator ever describe things based on a character's view instead of facts?

What do the positive and negative (+/-) transmit and receive pins mean on Ethernet cables?

Why is participating in the European Parliamentary elections used as a threat?

A seasonal riddle

How do you say "Trust your struggle." in French?

When is the exact date for EOL of Ubuntu 14.04 LTS?

I keep switching characters, how do I stop?

Reason why a kingside attack is not justified

How can a new country break out from a developed country without war?

Output visual diagram of picture

Writing in a Christian voice

1 John in Luther’s Bibel

Do native speakers use "ultima" and "proxima" frequently in spoken English?

Is there any common country to visit for persons holding UK and Schengen visas?

Why didn't Voldemort know what Grindelwald looked like?

categorizing a variable turns it from insignificant to significant

If the Dominion rule using their Jem'Hadar troops, why is their life expectancy so low?

Do people actually use the word "kaputt" in conversation?

Weird lines in Microsoft Word

"Oh no!" in Latin

Is there a POSIX way to shutdown a UNIX machine?

Started in 1987 vs. Starting in 1987



Cover Chessboard with Domino Tiles


Chessboard $8times8$ covered by $32$ dominoesProve or disprove a chessboard with diagonal corners removed, cannot be tiled with L shape pieces or size 2A mathematical game: moving tilesarea estimation with tilingHamiltonian path on a chessboard with prescribed endpointsPosition games: how to fill a matrix with dominos?Triangling a triangleAlgorithm to solve this grid puzzle?Why is the following problem impossible to solve?How many valid mazes of some size are there?Maximum Area Covered by an S-Shaped Tiling













13












$begingroup$


I have a question about a mathematical riddle which I already solved but still looking for a shorter/simpler solution:



Following problem: We consider a standard $8 times 8$ chessboard and we cover it (completely!) with dominos of size $2 times 1$ (therefore every domino tile cover exactly $2$ fields).



The question is if we can find a cover such that there doesn't exist a $2 times 2$ subsquare which is covered exactly by two domino tiles or in other words in the cover there don't occure two "direct" neighbour domino tiles from following shape:



enter image description here



I have it already solved in following way: I claim that such covering isn't possible.



Argue via contradiction: Assume that it's possible. Consider the $2 times 2$ squares of the chess board and consider the partial cover of directly neighboured $2 times 2$ squares. If a cover as above really exist then up to symmetry on the common edge of the two neighboured squares there could only occure two following cases (here only the vertical pairs; horizontally: analogous):



enter image description here



  1. The two neighboured squares share a common domino tile (the orange one)


  2. they don't share any domino tile on the common edge


Now there are exactly $24$ such pairings between neighboured $2 times 2$ squares (note we don't consider the diagonal neighbour pairs).



Now we count all domino tiles in following way:



-each pair of neighbour squares which share a unique common domino tile contribute a $1$ (the orange one)



-each pair of neighbour squares don't share a common domino tile contribute a $1$ with the unique tile beeing fully contained in only one square and intersecting the common edge (the grey one).



That's all. But then we get only $24$ tiles althought there are $32$. Contradiction.



I guess this argument works but I think that it's too cumbersome. Does anybody have an easier / not too circumstaneous way to show it?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    This is part of an ongoing contest! (Bundeswettbewerb Mathematik)
    $endgroup$
    – Hagen von Eitzen
    Dec 26 '18 at 19:44










  • $begingroup$
    @HagenvonEitzen: Hi, sorry, I wasn't conscious about it. I just accidentally encountered encountered this problem made me curious. Generally, I would suggest to delete the question but I think that it would not be ok towards the author or the excellent answer below.
    $endgroup$
    – KarlPeter
    Dec 26 '18 at 21:32















13












$begingroup$


I have a question about a mathematical riddle which I already solved but still looking for a shorter/simpler solution:



Following problem: We consider a standard $8 times 8$ chessboard and we cover it (completely!) with dominos of size $2 times 1$ (therefore every domino tile cover exactly $2$ fields).



The question is if we can find a cover such that there doesn't exist a $2 times 2$ subsquare which is covered exactly by two domino tiles or in other words in the cover there don't occure two "direct" neighbour domino tiles from following shape:



enter image description here



I have it already solved in following way: I claim that such covering isn't possible.



Argue via contradiction: Assume that it's possible. Consider the $2 times 2$ squares of the chess board and consider the partial cover of directly neighboured $2 times 2$ squares. If a cover as above really exist then up to symmetry on the common edge of the two neighboured squares there could only occure two following cases (here only the vertical pairs; horizontally: analogous):



enter image description here



  1. The two neighboured squares share a common domino tile (the orange one)


  2. they don't share any domino tile on the common edge


Now there are exactly $24$ such pairings between neighboured $2 times 2$ squares (note we don't consider the diagonal neighbour pairs).



Now we count all domino tiles in following way:



-each pair of neighbour squares which share a unique common domino tile contribute a $1$ (the orange one)



-each pair of neighbour squares don't share a common domino tile contribute a $1$ with the unique tile beeing fully contained in only one square and intersecting the common edge (the grey one).



That's all. But then we get only $24$ tiles althought there are $32$. Contradiction.



I guess this argument works but I think that it's too cumbersome. Does anybody have an easier / not too circumstaneous way to show it?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    This is part of an ongoing contest! (Bundeswettbewerb Mathematik)
    $endgroup$
    – Hagen von Eitzen
    Dec 26 '18 at 19:44










  • $begingroup$
    @HagenvonEitzen: Hi, sorry, I wasn't conscious about it. I just accidentally encountered encountered this problem made me curious. Generally, I would suggest to delete the question but I think that it would not be ok towards the author or the excellent answer below.
    $endgroup$
    – KarlPeter
    Dec 26 '18 at 21:32













13












13








13


7



$begingroup$


I have a question about a mathematical riddle which I already solved but still looking for a shorter/simpler solution:



Following problem: We consider a standard $8 times 8$ chessboard and we cover it (completely!) with dominos of size $2 times 1$ (therefore every domino tile cover exactly $2$ fields).



The question is if we can find a cover such that there doesn't exist a $2 times 2$ subsquare which is covered exactly by two domino tiles or in other words in the cover there don't occure two "direct" neighbour domino tiles from following shape:



enter image description here



I have it already solved in following way: I claim that such covering isn't possible.



Argue via contradiction: Assume that it's possible. Consider the $2 times 2$ squares of the chess board and consider the partial cover of directly neighboured $2 times 2$ squares. If a cover as above really exist then up to symmetry on the common edge of the two neighboured squares there could only occure two following cases (here only the vertical pairs; horizontally: analogous):



enter image description here



  1. The two neighboured squares share a common domino tile (the orange one)


  2. they don't share any domino tile on the common edge


Now there are exactly $24$ such pairings between neighboured $2 times 2$ squares (note we don't consider the diagonal neighbour pairs).



Now we count all domino tiles in following way:



-each pair of neighbour squares which share a unique common domino tile contribute a $1$ (the orange one)



-each pair of neighbour squares don't share a common domino tile contribute a $1$ with the unique tile beeing fully contained in only one square and intersecting the common edge (the grey one).



That's all. But then we get only $24$ tiles althought there are $32$. Contradiction.



I guess this argument works but I think that it's too cumbersome. Does anybody have an easier / not too circumstaneous way to show it?










share|cite|improve this question











$endgroup$




I have a question about a mathematical riddle which I already solved but still looking for a shorter/simpler solution:



Following problem: We consider a standard $8 times 8$ chessboard and we cover it (completely!) with dominos of size $2 times 1$ (therefore every domino tile cover exactly $2$ fields).



The question is if we can find a cover such that there doesn't exist a $2 times 2$ subsquare which is covered exactly by two domino tiles or in other words in the cover there don't occure two "direct" neighbour domino tiles from following shape:



enter image description here



I have it already solved in following way: I claim that such covering isn't possible.



Argue via contradiction: Assume that it's possible. Consider the $2 times 2$ squares of the chess board and consider the partial cover of directly neighboured $2 times 2$ squares. If a cover as above really exist then up to symmetry on the common edge of the two neighboured squares there could only occure two following cases (here only the vertical pairs; horizontally: analogous):



enter image description here



  1. The two neighboured squares share a common domino tile (the orange one)


  2. they don't share any domino tile on the common edge


Now there are exactly $24$ such pairings between neighboured $2 times 2$ squares (note we don't consider the diagonal neighbour pairs).



Now we count all domino tiles in following way:



-each pair of neighbour squares which share a unique common domino tile contribute a $1$ (the orange one)



-each pair of neighbour squares don't share a common domino tile contribute a $1$ with the unique tile beeing fully contained in only one square and intersecting the common edge (the grey one).



That's all. But then we get only $24$ tiles althought there are $32$. Contradiction.



I guess this argument works but I think that it's too cumbersome. Does anybody have an easier / not too circumstaneous way to show it?







recreational-mathematics puzzle






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 19:30







KarlPeter

















asked Dec 25 '18 at 18:59









KarlPeterKarlPeter

4641315




4641315







  • 2




    $begingroup$
    This is part of an ongoing contest! (Bundeswettbewerb Mathematik)
    $endgroup$
    – Hagen von Eitzen
    Dec 26 '18 at 19:44










  • $begingroup$
    @HagenvonEitzen: Hi, sorry, I wasn't conscious about it. I just accidentally encountered encountered this problem made me curious. Generally, I would suggest to delete the question but I think that it would not be ok towards the author or the excellent answer below.
    $endgroup$
    – KarlPeter
    Dec 26 '18 at 21:32












  • 2




    $begingroup$
    This is part of an ongoing contest! (Bundeswettbewerb Mathematik)
    $endgroup$
    – Hagen von Eitzen
    Dec 26 '18 at 19:44










  • $begingroup$
    @HagenvonEitzen: Hi, sorry, I wasn't conscious about it. I just accidentally encountered encountered this problem made me curious. Generally, I would suggest to delete the question but I think that it would not be ok towards the author or the excellent answer below.
    $endgroup$
    – KarlPeter
    Dec 26 '18 at 21:32







2




2




$begingroup$
This is part of an ongoing contest! (Bundeswettbewerb Mathematik)
$endgroup$
– Hagen von Eitzen
Dec 26 '18 at 19:44




$begingroup$
This is part of an ongoing contest! (Bundeswettbewerb Mathematik)
$endgroup$
– Hagen von Eitzen
Dec 26 '18 at 19:44












$begingroup$
@HagenvonEitzen: Hi, sorry, I wasn't conscious about it. I just accidentally encountered encountered this problem made me curious. Generally, I would suggest to delete the question but I think that it would not be ok towards the author or the excellent answer below.
$endgroup$
– KarlPeter
Dec 26 '18 at 21:32




$begingroup$
@HagenvonEitzen: Hi, sorry, I wasn't conscious about it. I just accidentally encountered encountered this problem made me curious. Generally, I would suggest to delete the question but I think that it would not be ok towards the author or the excellent answer below.
$endgroup$
– KarlPeter
Dec 26 '18 at 21:32










1 Answer
1






active

oldest

votes


















38












$begingroup$

How about this:



Let's number the rows $1$ through $8$ from top to bottom, and the columns $1$ through $8$ from left to right. Cell $(x,y)$ means the cell in row $x$ and column $y$



You need a tile to cover cell $(1,1)$.This can be done in two ways, but by symmetry, we only have to consider one of these, so let's consider placing it horizontally, i.e. cover cells $(1,1)$ and $(1,2)$:



enter image description here



Now we need to cover cell $(2,1)$. In order to avoid making a $2times 2$ subsquare made up of two tiles, there is only way way to place a tile under it, so that will cover cells $(2,1)$ and $(3,1)$:



enter image description here



Now we need to cover $(2,2)$. Again, there is only way way to do this in order to avoid making a $2times 2$ subsquare made up of two tiles: cover cells $(2,2)$ and $(2,3)$.



enter image description here



OK, and now keep placing tiles along this basic 'diagonal' of the chess-board: you'll find all the placements are forced if you want to avoid a $2times 2$ subsquare made up of two tiles. But, at the end of the diagonal, you end up having to use one tile to cover $(7,6)$ and $(8,6)$, and another one to cover $(7,7)$ and $(7,8)$:



enter image description here



... and now you are forced to also place one on $(8,7)$ and $(8,8)$, and get a $2times 2$ subsquare made up of two tiles. (also note that the two parts of the board as of yet uncovered each have an odd number of squares left, so they can no longer be completely covered)



So, it is indeed impossible to do a complete tiling without getting a $2times 2$ subsquare made up of two tiles.






share|cite|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052354%2fcover-chessboard-with-domino-tiles%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    38












    $begingroup$

    How about this:



    Let's number the rows $1$ through $8$ from top to bottom, and the columns $1$ through $8$ from left to right. Cell $(x,y)$ means the cell in row $x$ and column $y$



    You need a tile to cover cell $(1,1)$.This can be done in two ways, but by symmetry, we only have to consider one of these, so let's consider placing it horizontally, i.e. cover cells $(1,1)$ and $(1,2)$:



    enter image description here



    Now we need to cover cell $(2,1)$. In order to avoid making a $2times 2$ subsquare made up of two tiles, there is only way way to place a tile under it, so that will cover cells $(2,1)$ and $(3,1)$:



    enter image description here



    Now we need to cover $(2,2)$. Again, there is only way way to do this in order to avoid making a $2times 2$ subsquare made up of two tiles: cover cells $(2,2)$ and $(2,3)$.



    enter image description here



    OK, and now keep placing tiles along this basic 'diagonal' of the chess-board: you'll find all the placements are forced if you want to avoid a $2times 2$ subsquare made up of two tiles. But, at the end of the diagonal, you end up having to use one tile to cover $(7,6)$ and $(8,6)$, and another one to cover $(7,7)$ and $(7,8)$:



    enter image description here



    ... and now you are forced to also place one on $(8,7)$ and $(8,8)$, and get a $2times 2$ subsquare made up of two tiles. (also note that the two parts of the board as of yet uncovered each have an odd number of squares left, so they can no longer be completely covered)



    So, it is indeed impossible to do a complete tiling without getting a $2times 2$ subsquare made up of two tiles.






    share|cite|improve this answer











    $endgroup$

















      38












      $begingroup$

      How about this:



      Let's number the rows $1$ through $8$ from top to bottom, and the columns $1$ through $8$ from left to right. Cell $(x,y)$ means the cell in row $x$ and column $y$



      You need a tile to cover cell $(1,1)$.This can be done in two ways, but by symmetry, we only have to consider one of these, so let's consider placing it horizontally, i.e. cover cells $(1,1)$ and $(1,2)$:



      enter image description here



      Now we need to cover cell $(2,1)$. In order to avoid making a $2times 2$ subsquare made up of two tiles, there is only way way to place a tile under it, so that will cover cells $(2,1)$ and $(3,1)$:



      enter image description here



      Now we need to cover $(2,2)$. Again, there is only way way to do this in order to avoid making a $2times 2$ subsquare made up of two tiles: cover cells $(2,2)$ and $(2,3)$.



      enter image description here



      OK, and now keep placing tiles along this basic 'diagonal' of the chess-board: you'll find all the placements are forced if you want to avoid a $2times 2$ subsquare made up of two tiles. But, at the end of the diagonal, you end up having to use one tile to cover $(7,6)$ and $(8,6)$, and another one to cover $(7,7)$ and $(7,8)$:



      enter image description here



      ... and now you are forced to also place one on $(8,7)$ and $(8,8)$, and get a $2times 2$ subsquare made up of two tiles. (also note that the two parts of the board as of yet uncovered each have an odd number of squares left, so they can no longer be completely covered)



      So, it is indeed impossible to do a complete tiling without getting a $2times 2$ subsquare made up of two tiles.






      share|cite|improve this answer











      $endgroup$















        38












        38








        38





        $begingroup$

        How about this:



        Let's number the rows $1$ through $8$ from top to bottom, and the columns $1$ through $8$ from left to right. Cell $(x,y)$ means the cell in row $x$ and column $y$



        You need a tile to cover cell $(1,1)$.This can be done in two ways, but by symmetry, we only have to consider one of these, so let's consider placing it horizontally, i.e. cover cells $(1,1)$ and $(1,2)$:



        enter image description here



        Now we need to cover cell $(2,1)$. In order to avoid making a $2times 2$ subsquare made up of two tiles, there is only way way to place a tile under it, so that will cover cells $(2,1)$ and $(3,1)$:



        enter image description here



        Now we need to cover $(2,2)$. Again, there is only way way to do this in order to avoid making a $2times 2$ subsquare made up of two tiles: cover cells $(2,2)$ and $(2,3)$.



        enter image description here



        OK, and now keep placing tiles along this basic 'diagonal' of the chess-board: you'll find all the placements are forced if you want to avoid a $2times 2$ subsquare made up of two tiles. But, at the end of the diagonal, you end up having to use one tile to cover $(7,6)$ and $(8,6)$, and another one to cover $(7,7)$ and $(7,8)$:



        enter image description here



        ... and now you are forced to also place one on $(8,7)$ and $(8,8)$, and get a $2times 2$ subsquare made up of two tiles. (also note that the two parts of the board as of yet uncovered each have an odd number of squares left, so they can no longer be completely covered)



        So, it is indeed impossible to do a complete tiling without getting a $2times 2$ subsquare made up of two tiles.






        share|cite|improve this answer











        $endgroup$



        How about this:



        Let's number the rows $1$ through $8$ from top to bottom, and the columns $1$ through $8$ from left to right. Cell $(x,y)$ means the cell in row $x$ and column $y$



        You need a tile to cover cell $(1,1)$.This can be done in two ways, but by symmetry, we only have to consider one of these, so let's consider placing it horizontally, i.e. cover cells $(1,1)$ and $(1,2)$:



        enter image description here



        Now we need to cover cell $(2,1)$. In order to avoid making a $2times 2$ subsquare made up of two tiles, there is only way way to place a tile under it, so that will cover cells $(2,1)$ and $(3,1)$:



        enter image description here



        Now we need to cover $(2,2)$. Again, there is only way way to do this in order to avoid making a $2times 2$ subsquare made up of two tiles: cover cells $(2,2)$ and $(2,3)$.



        enter image description here



        OK, and now keep placing tiles along this basic 'diagonal' of the chess-board: you'll find all the placements are forced if you want to avoid a $2times 2$ subsquare made up of two tiles. But, at the end of the diagonal, you end up having to use one tile to cover $(7,6)$ and $(8,6)$, and another one to cover $(7,7)$ and $(7,8)$:



        enter image description here



        ... and now you are forced to also place one on $(8,7)$ and $(8,8)$, and get a $2times 2$ subsquare made up of two tiles. (also note that the two parts of the board as of yet uncovered each have an odd number of squares left, so they can no longer be completely covered)



        So, it is indeed impossible to do a complete tiling without getting a $2times 2$ subsquare made up of two tiles.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 26 '18 at 0:31









        Mutantoe

        623513




        623513










        answered Dec 25 '18 at 19:28









        Bram28Bram28

        63.8k44793




        63.8k44793



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052354%2fcover-chessboard-with-domino-tiles%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye