Karoubi envelope Automorphisms in the Karoubi envelope Examples References Navigation menu10.1016/0304-3975(85)90062-310.1016/s0019-9958(82)90796-3"Idempotent completion of triangulated categories"10.1006/jabr.2000.85290021-8693

Category theory


mathematicscategoryidempotentspreadditive categorypseudo-abelian categoryMax Karoubiendomorphismmorphismsfull subcategorypresheavesrepresentable functorsautomorphism




In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi.


Given a category C, an idempotent of C is an endomorphism


e:A→Adisplaystyle e:Arightarrow A

with



e∘e=edisplaystyle ecirc e=e.

An idempotent e: AA is said to split if there is an object B and morphisms f: AB,
g : BA such that e = g f and 1B = f g.


The Karoubi envelope of C, sometimes written Split(C), is the category whose objects are pairs of the form (A, e) where A is an object of C and e:A→Adisplaystyle e:Arightarrow A is an idempotent of C, and whose morphisms are the triples


(e,f,e′):(A,e)→(A′,e′)displaystyle (e,f,e^prime ):(A,e)rightarrow (A^prime ,e^prime )

where f:A→A′displaystyle f:Arightarrow A^prime is a morphism of C satisfying e′∘f=f=f∘edisplaystyle e^prime circ f=f=fcirc e (or equivalently f=e′∘f∘edisplaystyle f=e'circ fcirc e).


Composition in Split(C) is as in C, but the identity morphism
on (A,e)displaystyle (A,e) in Split(C) is (e,e,e)displaystyle (e,e,e), rather than
the identity on Adisplaystyle A.


The category C embeds fully and faithfully in Split(C). In Split(C) every idempotent splits, and Split(C) is the universal category with this property.
The Karoubi envelope of a category C can therefore be considered as the "completion" of C which splits idempotents.


The Karoubi envelope of a category C can equivalently be defined as the full subcategory of C^displaystyle hat mathbf C (the presheaves over C) of retracts of representable functors. The category of presheaves on C is equivalent to the category of presheaves on Split(C).



Automorphisms in the Karoubi envelope


An automorphism in Split(C) is of the form (e,f,e):(A,e)→(A,e)displaystyle (e,f,e):(A,e)rightarrow (A,e), with inverse (e,g,e):(A,e)→(A,e)displaystyle (e,g,e):(A,e)rightarrow (A,e) satisfying:


g∘f=e=f∘gdisplaystyle gcirc f=e=fcirc g

g∘f∘g=gdisplaystyle gcirc fcirc g=g

f∘g∘f=fdisplaystyle fcirc gcirc f=f

If the first equation is relaxed to just have g∘f=f∘gdisplaystyle gcirc f=fcirc g, then f is a partial automorphism (with inverse g). A (partial) involution in Split(C) is a self-inverse (partial) automorphism.



Examples


  • If C has products, then given an isomorphism f:A→Bdisplaystyle f:Arightarrow B the mapping f×f−1:A×B→B×Adisplaystyle ftimes f^-1:Atimes Brightarrow Btimes A, composed with the canonical map γ:B×A→A×Bdisplaystyle gamma :Btimes Arightarrow Atimes B of symmetry, is a partial involution.

  • If C is a triangulated category, the Karoubi envelope Split(C) can be endowed with the structure of a triangulated category such that the canonical functor CSplit(C) becomes a triangulated functor.[1]

  • The Karoubi envelope is used in the construction of several categories of motives.

  • The Karoubi envelope construction takes semi-adjunctions to adjunctions.[2] For this reason the Karoubi envelope is used in the study of models of the untyped lambda calculus. The Karoubi envelope of an extensional lambda model (a monoid, considered as a category) is cartesian closed.[3][4]

  • The category of projective modules over any ring is the Karoubi envelope of its full subcategory of free modules.

  • The category of vector bundles over any paracompact space is the Karoubi envelope of its full subcategory of trivial bundles. This is in fact a special case of the previous example by the Serre-Swan theorem and conversely this theorem can be proved by first proving both these facts, the observation that the global sections functor is an equivalence between trivial vector bundles over Xdisplaystyle X and projective modules over C(X)displaystyle C(X) and then using the universal property of the Karoubi envelope.


References



  1. ^ Balmer & Schlichting 2001


  2. ^ Susumu Hayashi (1985). "Adjunction of Semifunctors: Categorical Structures in Non-extensional Lambda Calculus". Theoretical Computer Science. 41: 95–104. doi:10.1016/0304-3975(85)90062-3..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  3. ^ C.P.J. Koymans (1982). "Models of the lambda calculus". Information and Control. 52: 306–332. doi:10.1016/s0019-9958(82)90796-3.


  4. ^ DS Scott (1980). "Relating theories of the lambda calculus". To HB Curry: Essays in Combinatory Logic.



  • Balmer, Paul; Schlichting, Marco (2001), "Idempotent completion of triangulated categories" (PDF), Journal of Algebra, 236 (2): 819–834, doi:10.1006/jabr.2000.8529, ISSN 0021-8693

Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye