The boundary of union is the union of boundaries when the sets have disjoint closuresHelp proving $partial (A cup B) = partial Acuppartial B$?Boundary of union of two sets equals the union of their boundariesProve that if Cl(A) ∩ Cl(B) = ∅, then Bd(A ∪ B) = Bd(A) ∪ Bd(B).If $U,,Vsubseteq mathbbR^2$, $Ucap V = emptyset$ then $partial (V cup U)=(partial V) cup (partial U)$?When boundary of union is equal to union of boundariesIf $Asubset X$, and $partial A$ and $X$ are connected, then $Cl(A)$ is connected.Boundary of union equal union of boundariesCorrectness of topological reasoning (interior, closure and boundary of sets)Prove that $E$ is disconnected iff there exists two open disjoint sets $A$,$B$ in $X$Boundary of the boundary of a closed set?Continuous function crosses the boundary?Boundary of union of disjoint open sets.In a normed set the boundary of a subset is contained in the boundary of the closure of the set.Open sets intersecting on boundaryWhat is the boundary of $mathbbQ times mathbbQ$ in $mathbbR times mathbbQ$?The interior of union of two boundary open sets is emptyBoundary of union equal union of boundaries

Why does Kotter return in Welcome Back Kotter?

How to write a macro that is braces sensitive?

Is it important to consider tone, melody, and musical form while writing a song?

How do I create uniquely male characters?

What are the differences between the usage of 'it' and 'they'?

Smoothness of finite-dimensional functional calculus

Do VLANs within a subnet need to have their own subnet for router on a stick?

Test whether all array elements are factors of a number

Has the BBC provided arguments for saying Brexit being cancelled is unlikely?

Dragon forelimb placement

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Which models of the Boeing 737 are still in production?

Did Shadowfax go to Valinor?

Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.

What's the output of a record cartridge playing an out-of-speed record

Email Account under attack (really) - anything I can do?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

Why do falling prices hurt debtors?

How to say job offer in Mandarin/Cantonese?

The use of multiple foreign keys on same column in SQL Server

Font hinting is lost in Chrome-like browsers (for some languages )

How does strength of boric acid solution increase in presence of salicylic acid?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?



The boundary of union is the union of boundaries when the sets have disjoint closures


Help proving $partial (A cup B) = partial Acuppartial B$?Boundary of union of two sets equals the union of their boundariesProve that if Cl(A) ∩ Cl(B) = ∅, then Bd(A ∪ B) = Bd(A) ∪ Bd(B).If $U,,Vsubseteq mathbbR^2$, $Ucap V = emptyset$ then $partial (V cup U)=(partial V) cup (partial U)$?When boundary of union is equal to union of boundariesIf $Asubset X$, and $partial A$ and $X$ are connected, then $Cl(A)$ is connected.Boundary of union equal union of boundariesCorrectness of topological reasoning (interior, closure and boundary of sets)Prove that $E$ is disconnected iff there exists two open disjoint sets $A$,$B$ in $X$Boundary of the boundary of a closed set?Continuous function crosses the boundary?Boundary of union of disjoint open sets.In a normed set the boundary of a subset is contained in the boundary of the closure of the set.Open sets intersecting on boundaryWhat is the boundary of $mathbbQ times mathbbQ$ in $mathbbR times mathbbQ$?The interior of union of two boundary open sets is emptyBoundary of union equal union of boundaries













8












$begingroup$


Assume $bar Acapbar B=emptyset$. Is $partial (A cup B)=partial Acuppartial B$, where $partial A$ and $bar A$ mean the boundary set and closure of set $A$?



I can prove that $partial (A cup B)subset partial Acuppartial B$ but for proving $partial Acuppartial Bsubset partial (A cup B)$ it seems not trivial. I tried to show that for $xin partial Acuppartial B$ WLOG, $xin partial A$ so $B(x)cap A$ and $B(x)cap A^c$ not equal to $emptyset$ but it seems not enough to show the result.










share|cite|improve this question











$endgroup$
















    8












    $begingroup$


    Assume $bar Acapbar B=emptyset$. Is $partial (A cup B)=partial Acuppartial B$, where $partial A$ and $bar A$ mean the boundary set and closure of set $A$?



    I can prove that $partial (A cup B)subset partial Acuppartial B$ but for proving $partial Acuppartial Bsubset partial (A cup B)$ it seems not trivial. I tried to show that for $xin partial Acuppartial B$ WLOG, $xin partial A$ so $B(x)cap A$ and $B(x)cap A^c$ not equal to $emptyset$ but it seems not enough to show the result.










    share|cite|improve this question











    $endgroup$














      8












      8








      8


      3



      $begingroup$


      Assume $bar Acapbar B=emptyset$. Is $partial (A cup B)=partial Acuppartial B$, where $partial A$ and $bar A$ mean the boundary set and closure of set $A$?



      I can prove that $partial (A cup B)subset partial Acuppartial B$ but for proving $partial Acuppartial Bsubset partial (A cup B)$ it seems not trivial. I tried to show that for $xin partial Acuppartial B$ WLOG, $xin partial A$ so $B(x)cap A$ and $B(x)cap A^c$ not equal to $emptyset$ but it seems not enough to show the result.










      share|cite|improve this question











      $endgroup$




      Assume $bar Acapbar B=emptyset$. Is $partial (A cup B)=partial Acuppartial B$, where $partial A$ and $bar A$ mean the boundary set and closure of set $A$?



      I can prove that $partial (A cup B)subset partial Acuppartial B$ but for proving $partial Acuppartial Bsubset partial (A cup B)$ it seems not trivial. I tried to show that for $xin partial Acuppartial B$ WLOG, $xin partial A$ so $B(x)cap A$ and $B(x)cap A^c$ not equal to $emptyset$ but it seems not enough to show the result.







      general-topology






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 1 '15 at 18:11







      user147263

















      asked Oct 22 '12 at 16:21









      MathematicsMathematics

      2,20322145




      2,20322145




















          1 Answer
          1






          active

          oldest

          votes


















          10












          $begingroup$

          You can actually get by with a little less: If $overlineA cap B = emptyset = A cap overlineB$, the result holds.



          As you have noticed, we have that $partial ( A cup B ) subseteq partial A cup partial B$. Suppose that $x notin partial ( A cup B )$. There are two cases:



          1. $x notin overline A cup B = overlineA cup overlineB$. In this case it can easily be shown that $x notin partial A cup partial B$.

          2. $x notin overline X setminus ( A cup B ) $. Then $x in X setminus overline X setminus ( A cup B ) = mathrmInt ( A cup B )$. Without loss of generality assume that $x in A$, and since $Acap overline B=emptyset$, then $xin Xsetminusoverline B$, which implies that $xnotin partial (B)$. Furthermore, it can be shown that $U = mathrmInt ( A cup B ) setminus overlineB$ is a neighbourhood of $x$ that is contained in $A$, and so $x notin partial A$. Thus $x notin partial A cup partial B$.





          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f218805%2fthe-boundary-of-union-is-the-union-of-boundaries-when-the-sets-have-disjoint-clo%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            You can actually get by with a little less: If $overlineA cap B = emptyset = A cap overlineB$, the result holds.



            As you have noticed, we have that $partial ( A cup B ) subseteq partial A cup partial B$. Suppose that $x notin partial ( A cup B )$. There are two cases:



            1. $x notin overline A cup B = overlineA cup overlineB$. In this case it can easily be shown that $x notin partial A cup partial B$.

            2. $x notin overline X setminus ( A cup B ) $. Then $x in X setminus overline X setminus ( A cup B ) = mathrmInt ( A cup B )$. Without loss of generality assume that $x in A$, and since $Acap overline B=emptyset$, then $xin Xsetminusoverline B$, which implies that $xnotin partial (B)$. Furthermore, it can be shown that $U = mathrmInt ( A cup B ) setminus overlineB$ is a neighbourhood of $x$ that is contained in $A$, and so $x notin partial A$. Thus $x notin partial A cup partial B$.





            share|cite|improve this answer











            $endgroup$

















              10












              $begingroup$

              You can actually get by with a little less: If $overlineA cap B = emptyset = A cap overlineB$, the result holds.



              As you have noticed, we have that $partial ( A cup B ) subseteq partial A cup partial B$. Suppose that $x notin partial ( A cup B )$. There are two cases:



              1. $x notin overline A cup B = overlineA cup overlineB$. In this case it can easily be shown that $x notin partial A cup partial B$.

              2. $x notin overline X setminus ( A cup B ) $. Then $x in X setminus overline X setminus ( A cup B ) = mathrmInt ( A cup B )$. Without loss of generality assume that $x in A$, and since $Acap overline B=emptyset$, then $xin Xsetminusoverline B$, which implies that $xnotin partial (B)$. Furthermore, it can be shown that $U = mathrmInt ( A cup B ) setminus overlineB$ is a neighbourhood of $x$ that is contained in $A$, and so $x notin partial A$. Thus $x notin partial A cup partial B$.





              share|cite|improve this answer











              $endgroup$















                10












                10








                10





                $begingroup$

                You can actually get by with a little less: If $overlineA cap B = emptyset = A cap overlineB$, the result holds.



                As you have noticed, we have that $partial ( A cup B ) subseteq partial A cup partial B$. Suppose that $x notin partial ( A cup B )$. There are two cases:



                1. $x notin overline A cup B = overlineA cup overlineB$. In this case it can easily be shown that $x notin partial A cup partial B$.

                2. $x notin overline X setminus ( A cup B ) $. Then $x in X setminus overline X setminus ( A cup B ) = mathrmInt ( A cup B )$. Without loss of generality assume that $x in A$, and since $Acap overline B=emptyset$, then $xin Xsetminusoverline B$, which implies that $xnotin partial (B)$. Furthermore, it can be shown that $U = mathrmInt ( A cup B ) setminus overlineB$ is a neighbourhood of $x$ that is contained in $A$, and so $x notin partial A$. Thus $x notin partial A cup partial B$.





                share|cite|improve this answer











                $endgroup$



                You can actually get by with a little less: If $overlineA cap B = emptyset = A cap overlineB$, the result holds.



                As you have noticed, we have that $partial ( A cup B ) subseteq partial A cup partial B$. Suppose that $x notin partial ( A cup B )$. There are two cases:



                1. $x notin overline A cup B = overlineA cup overlineB$. In this case it can easily be shown that $x notin partial A cup partial B$.

                2. $x notin overline X setminus ( A cup B ) $. Then $x in X setminus overline X setminus ( A cup B ) = mathrmInt ( A cup B )$. Without loss of generality assume that $x in A$, and since $Acap overline B=emptyset$, then $xin Xsetminusoverline B$, which implies that $xnotin partial (B)$. Furthermore, it can be shown that $U = mathrmInt ( A cup B ) setminus overlineB$ is a neighbourhood of $x$ that is contained in $A$, and so $x notin partial A$. Thus $x notin partial A cup partial B$.






                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Apr 2 '17 at 18:53









                Community

                1




                1










                answered Oct 22 '12 at 17:16









                user642796user642796

                44.9k565119




                44.9k565119



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f218805%2fthe-boundary-of-union-is-the-union-of-boundaries-when-the-sets-have-disjoint-clo%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                    Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                    Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers