Find all local maximum and minimum points of the function $f$.Maximum and Minimum ValueFinding all local maximum and minimum for some unusual functions.Finding intervals using local min and max (in interval notation form)Minimum/Maximum Question (Calculus)Local max, min and point of inflection of $y= ax^3 + 3bx^2 + 3cx - d$Find he local maximum and minimum value and saddle points of the function?Find the absolute minimum and maximum values of $f(theta) = cos theta$Maximum/MinimumDetermine local max., local min., and saddle points of the following function: $4x + 4y + x^2y + xy^2$$f$ differentiable $5$ times around $x=a, f'(a)=f''(a)=f'''(a)=0, f^(4)(x) <0 Rightarrow x=a$ is either a local minimum or a local maximum point

Can I make popcorn with any corn?

Problem of parity - Can we draw a closed path made up of 20 line segments...

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

How can I make my BBEG immortal short of making them a Lich or Vampire?

Have astronauts in space suits ever taken selfies? If so, how?

Mathematical cryptic clues

Minkowski space

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

LaTeX closing $ signs makes cursor jump

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

How is it possible to have an ability score that is less than 3?

Test whether all array elements are factors of a number

What is the word for reserving something for yourself before others do?

What does "Puller Prush Person" mean?

What defenses are there against being summoned by the Gate spell?

Do VLANs within a subnet need to have their own subnet for router on a stick?

What typically incentivizes a professor to change jobs to a lower ranking university?

How to find program name(s) of an installed package?

Can a Warlock become Neutral Good?

Languages that we cannot (dis)prove to be Context-Free

Which models of the Boeing 737 are still in production?

Why Is Death Allowed In the Matrix?

Watching something be written to a file live with tail



Find all local maximum and minimum points of the function $f$.


Maximum and Minimum ValueFinding all local maximum and minimum for some unusual functions.Finding intervals using local min and max (in interval notation form)Minimum/Maximum Question (Calculus)Local max, min and point of inflection of $y= ax^3 + 3bx^2 + 3cx - d$Find he local maximum and minimum value and saddle points of the function?Find the absolute minimum and maximum values of $f(theta) = cos theta$Maximum/MinimumDetermine local max., local min., and saddle points of the following function: $4x + 4y + x^2y + xy^2$$f$ differentiable $5$ times around $x=a, f'(a)=f''(a)=f'''(a)=0, f^(4)(x) <0 Rightarrow x=a$ is either a local minimum or a local maximum point













0












$begingroup$


Any help with this problem I have would be so much appreciated, i've been going round in circles and have no idea what I'm really doing.



I have the problem:



  • Find all local maximum and minimum points of the function $f = xy$.

I've done the first derivative to get $$f' = 1(fracdydx)$$



But I have no clue on how to find the local max and min from this.
Any help would be grateful.



Thank you.










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    Any help with this problem I have would be so much appreciated, i've been going round in circles and have no idea what I'm really doing.



    I have the problem:



    • Find all local maximum and minimum points of the function $f = xy$.

    I've done the first derivative to get $$f' = 1(fracdydx)$$



    But I have no clue on how to find the local max and min from this.
    Any help would be grateful.



    Thank you.










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      Any help with this problem I have would be so much appreciated, i've been going round in circles and have no idea what I'm really doing.



      I have the problem:



      • Find all local maximum and minimum points of the function $f = xy$.

      I've done the first derivative to get $$f' = 1(fracdydx)$$



      But I have no clue on how to find the local max and min from this.
      Any help would be grateful.



      Thank you.










      share|cite|improve this question









      $endgroup$




      Any help with this problem I have would be so much appreciated, i've been going round in circles and have no idea what I'm really doing.



      I have the problem:



      • Find all local maximum and minimum points of the function $f = xy$.

      I've done the first derivative to get $$f' = 1(fracdydx)$$



      But I have no clue on how to find the local max and min from this.
      Any help would be grateful.



      Thank you.







      calculus maxima-minima






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 22 at 0:20









      The StatisticianThe Statistician

      115112




      115112




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          The local extrema of a function occur at stationary points, i.e. where the function's total derivative is $0$. In terms of partial derivatives, if the function has continuous partial derivatives (which this one does), this is equivalent to the partial derivatives both being $0$ at the point.



          Partially differentiating, we have
          beginalign*
          f_x &= y \
          f_y &= x.
          endalign*

          These are both $0$ only at $(x, y) = (0, 0)$.



          However, this stationary point is neither a local minimum nor maximum. Consider, for $t in BbbR setminus 0$,
          beginalign*
          f(t, t) &= t^2 > 0 = f(0, 0) \
          f(t, -t) &= -t^2 < 0 = f(0, 0).
          endalign*

          That is, there are points as close as you want to $(0, 0)$ that have greater and lesser function values than $f(0, 0) = 0$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3157574%2ffind-all-local-maximum-and-minimum-points-of-the-function-f%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The local extrema of a function occur at stationary points, i.e. where the function's total derivative is $0$. In terms of partial derivatives, if the function has continuous partial derivatives (which this one does), this is equivalent to the partial derivatives both being $0$ at the point.



            Partially differentiating, we have
            beginalign*
            f_x &= y \
            f_y &= x.
            endalign*

            These are both $0$ only at $(x, y) = (0, 0)$.



            However, this stationary point is neither a local minimum nor maximum. Consider, for $t in BbbR setminus 0$,
            beginalign*
            f(t, t) &= t^2 > 0 = f(0, 0) \
            f(t, -t) &= -t^2 < 0 = f(0, 0).
            endalign*

            That is, there are points as close as you want to $(0, 0)$ that have greater and lesser function values than $f(0, 0) = 0$.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              The local extrema of a function occur at stationary points, i.e. where the function's total derivative is $0$. In terms of partial derivatives, if the function has continuous partial derivatives (which this one does), this is equivalent to the partial derivatives both being $0$ at the point.



              Partially differentiating, we have
              beginalign*
              f_x &= y \
              f_y &= x.
              endalign*

              These are both $0$ only at $(x, y) = (0, 0)$.



              However, this stationary point is neither a local minimum nor maximum. Consider, for $t in BbbR setminus 0$,
              beginalign*
              f(t, t) &= t^2 > 0 = f(0, 0) \
              f(t, -t) &= -t^2 < 0 = f(0, 0).
              endalign*

              That is, there are points as close as you want to $(0, 0)$ that have greater and lesser function values than $f(0, 0) = 0$.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                The local extrema of a function occur at stationary points, i.e. where the function's total derivative is $0$. In terms of partial derivatives, if the function has continuous partial derivatives (which this one does), this is equivalent to the partial derivatives both being $0$ at the point.



                Partially differentiating, we have
                beginalign*
                f_x &= y \
                f_y &= x.
                endalign*

                These are both $0$ only at $(x, y) = (0, 0)$.



                However, this stationary point is neither a local minimum nor maximum. Consider, for $t in BbbR setminus 0$,
                beginalign*
                f(t, t) &= t^2 > 0 = f(0, 0) \
                f(t, -t) &= -t^2 < 0 = f(0, 0).
                endalign*

                That is, there are points as close as you want to $(0, 0)$ that have greater and lesser function values than $f(0, 0) = 0$.






                share|cite|improve this answer









                $endgroup$



                The local extrema of a function occur at stationary points, i.e. where the function's total derivative is $0$. In terms of partial derivatives, if the function has continuous partial derivatives (which this one does), this is equivalent to the partial derivatives both being $0$ at the point.



                Partially differentiating, we have
                beginalign*
                f_x &= y \
                f_y &= x.
                endalign*

                These are both $0$ only at $(x, y) = (0, 0)$.



                However, this stationary point is neither a local minimum nor maximum. Consider, for $t in BbbR setminus 0$,
                beginalign*
                f(t, t) &= t^2 > 0 = f(0, 0) \
                f(t, -t) &= -t^2 < 0 = f(0, 0).
                endalign*

                That is, there are points as close as you want to $(0, 0)$ that have greater and lesser function values than $f(0, 0) = 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 22 at 1:27









                Theo BenditTheo Bendit

                20.3k12353




                20.3k12353



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3157574%2ffind-all-local-maximum-and-minimum-points-of-the-function-f%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                    Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                    Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers