The Bayes predictor of the square loss is $Bbb E_P[Ymid X=x]$?What is the derivative of the cross entropy loss when extending an arbitrary predictor for multi class classification?Mean Square Error Minimization Conditioned On Multivariate Normal Random VariablesNotation in the derivative of the hinge loss functionsquare loss function in classificationProving that the Bayes optimal predictor is in fact optimalLet X : Ω → R be a random variable on a probability space that is normally distributed.The Bayes optimal predictor is optimalhinge loss vs. square of hinge loss componentsBayes (optimal) classifier for binary classification with asymmetric loss functionInequality for Log Concave Distributions

What would happen if the UK refused to take part in EU Parliamentary elections?

Was the picture area of a CRT a parallelogram (instead of a true rectangle)?

Everything Bob says is false. How does he get people to trust him?

Bash method for viewing beginning and end of file

Is HostGator storing my password in plaintext?

What would be the benefits of having both a state and local currencies?

Using parameter substitution on a Bash array

Why "be dealt cards" rather than "be dealing cards"?

Coordinate position not precise

Can criminal fraud exist without damages?

What is the term when two people sing in harmony, but they aren't singing the same notes?

Why is delta-v is the most useful quantity for planning space travel?

What to do with wrong results in talks?

How to be diplomatic in refusing to write code that breaches the privacy of our users

Should my PhD thesis be submitted under my legal name?

How can a jailer prevent the Forge Cleric's Artisan's Blessing from being used?

The baby cries all morning

apt-get update is failing in debian

Understanding "audieritis" in Psalm 94

Valid Badminton Score?

How will losing mobility of one hand affect my career as a programmer?

Mapping a list into a phase plot

How can I replace every global instance of "x[2]" with "x_2"

Your magic is very sketchy



The Bayes predictor of the square loss is $Bbb E_P[Ymid X=x]$?


What is the derivative of the cross entropy loss when extending an arbitrary predictor for multi class classification?Mean Square Error Minimization Conditioned On Multivariate Normal Random VariablesNotation in the derivative of the hinge loss functionsquare loss function in classificationProving that the Bayes optimal predictor is in fact optimalLet X : Ω → R be a random variable on a probability space that is normally distributed.The Bayes optimal predictor is optimalhinge loss vs. square of hinge loss componentsBayes (optimal) classifier for binary classification with asymmetric loss functionInequality for Log Concave Distributions













0












$begingroup$



Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?










share|cite|improve this question











$endgroup$





This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.











  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday















0












$begingroup$



Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?










share|cite|improve this question











$endgroup$





This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.











  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday













0












0








0





$begingroup$



Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?










share|cite|improve this question











$endgroup$





Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?







probability machine-learning






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 17 at 12:39









Bernard

123k741117




123k741117










asked Mar 17 at 12:33









Oliver GOliver G

1,3651632




1,3651632






This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.








This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.









  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday












  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday







1




1




$begingroup$
You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
$endgroup$
– Minus One-Twelfth
Mar 17 at 14:04




$begingroup$
You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
$endgroup$
– Minus One-Twelfth
Mar 17 at 14:04












$begingroup$
"I start with" You don't start with your desired conclusion. You start with what you know.
$endgroup$
– leonbloy
yesterday




$begingroup$
"I start with" You don't start with your desired conclusion. You start with what you know.
$endgroup$
– leonbloy
yesterday












$begingroup$
The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
$endgroup$
– Saad
yesterday




$begingroup$
The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
$endgroup$
– Saad
yesterday










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151486%2fthe-bayes-predictor-of-the-square-loss-is-bbb-e-py-mid-x-x%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151486%2fthe-bayes-predictor-of-the-square-loss-is-bbb-e-py-mid-x-x%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers