Can we construct a function $g$ and a partition $pi$ such that $pi(g)<v(g)<infty$?First order variation and total variation of a function/stochastic processClosure of space of simple functions in $L^infty([a,b])$Sub-additivity of the càdlàg continuity modulusLimit of arithmetic meansProve that $(k_n)$ and $(t_n)$ converge to the same limit.$int_a^b Vert gamma'(t)Vert dt=lim_delta(P)to0sum_k=0^nVert gamma(t_k+1)-gamma(t_k)Vert$The intersection of all the R-S integrable functions is the set of continuous functionsEvery polynomial $p(x)$ is of boundary variation in the interval $[a,b]$ and $V_a^b p leq int_a^b vert p'(s) ds vert$Show that the sequence is increasing and unboundedFor any continuous functions g in [0, 1], is there exist a partition sequence such that $[g, g]_pi$ = 0?

Is the destination of a commercial flight important for the pilot?

Is there any reason not to eat food that's been dropped on the surface of the moon?

Why "be dealt cards" rather than "be dealing cards"?

Will it be accepted, if there is no ''Main Character" stereotype?

The plural of 'stomach"

when is out of tune ok?

What is the term when two people sing in harmony, but they aren't singing the same notes?

Is it okay / does it make sense for another player to join a running game of Munchkin?

Is expanding the research of a group into machine learning as a PhD student risky?

What will be the benefits of Brexit?

Mapping a list into a phase plot

Efficiently merge handle parallel feature branches in SFDX

voltage of sounds of mp3files

Personal Teleportation as a Weapon

What would happen if the UK refused to take part in EU Parliamentary elections?

Greatest common substring

How to verify if g is a generator for p?

What is the opposite of 'gravitas'?

How will losing mobility of one hand affect my career as a programmer?

Can I use my Chinese passport to enter China after I acquired another citizenship?

How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Star/Wye electrical connection math symbol

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?



Can we construct a function $g$ and a partition $pi$ such that $pi(g)

First order variation and total variation of a function/stochastic processClosure of space of simple functions in $L^infty([a,b])$Sub-additivity of the càdlàg continuity modulusLimit of arithmetic meansProve that $(k_n)$ and $(t_n)$ converge to the same limit.$int_a^b Vert gamma'(t)Vert dt=lim_delta(P)to0sum_k=0^nVert gamma(t_k+1)-gamma(t_k)Vert$The intersection of all the R-S integrable functions is the set of continuous functionsEvery polynomial $p(x)$ is of boundary variation in the interval $[a,b]$ and $V_a^b p leq int_a^b vert p'(s) ds vert$Show that the sequence is increasing and unboundedFor any continuous functions g in [0, 1], is there exist a partition sequence such that $[g, g]_pi$ = 0?













0












$begingroup$


Let g be a function defined on [a,b],
and partition $triangle= a=t_0<t_1<dots<t_n=b$
$delta(triangle)=displaystylemax_1 leq k leq n(t_k+1-t_k)$



and $pi$ be a partition sequence, that is
$pi=triangle_n:triangle_nsubseteqtriangle_n+1, delta(triangle_n)to0$.



Let the variation of $g$ over $triangle$ be $triangle(g)=sum_k=0^n-1(g(t_k-1)-g(t_k))$



and let $pi(g)=limlimits_nto inftytriangle_n(g)$
and let $v(g)=displaystylesup_triangletriangle(g)$.



(a) Can we construct a function g and partition $pi$ such that $pi(g)<v(g)<infty$?



(b) If $g$ is either right or left continuous at each point of [a,b], is $pi(g)=v(g)$ for any $pi$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    I think an absolute value sign is missing in your definition of $Delta (g)$.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:54










  • $begingroup$
    Any strictly increasing function meets the requirements in a). The answer to b) is NO.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:56
















0












$begingroup$


Let g be a function defined on [a,b],
and partition $triangle= a=t_0<t_1<dots<t_n=b$
$delta(triangle)=displaystylemax_1 leq k leq n(t_k+1-t_k)$



and $pi$ be a partition sequence, that is
$pi=triangle_n:triangle_nsubseteqtriangle_n+1, delta(triangle_n)to0$.



Let the variation of $g$ over $triangle$ be $triangle(g)=sum_k=0^n-1(g(t_k-1)-g(t_k))$



and let $pi(g)=limlimits_nto inftytriangle_n(g)$
and let $v(g)=displaystylesup_triangletriangle(g)$.



(a) Can we construct a function g and partition $pi$ such that $pi(g)<v(g)<infty$?



(b) If $g$ is either right or left continuous at each point of [a,b], is $pi(g)=v(g)$ for any $pi$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    I think an absolute value sign is missing in your definition of $Delta (g)$.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:54










  • $begingroup$
    Any strictly increasing function meets the requirements in a). The answer to b) is NO.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:56














0












0








0





$begingroup$


Let g be a function defined on [a,b],
and partition $triangle= a=t_0<t_1<dots<t_n=b$
$delta(triangle)=displaystylemax_1 leq k leq n(t_k+1-t_k)$



and $pi$ be a partition sequence, that is
$pi=triangle_n:triangle_nsubseteqtriangle_n+1, delta(triangle_n)to0$.



Let the variation of $g$ over $triangle$ be $triangle(g)=sum_k=0^n-1(g(t_k-1)-g(t_k))$



and let $pi(g)=limlimits_nto inftytriangle_n(g)$
and let $v(g)=displaystylesup_triangletriangle(g)$.



(a) Can we construct a function g and partition $pi$ such that $pi(g)<v(g)<infty$?



(b) If $g$ is either right or left continuous at each point of [a,b], is $pi(g)=v(g)$ for any $pi$?










share|cite|improve this question











$endgroup$




Let g be a function defined on [a,b],
and partition $triangle= a=t_0<t_1<dots<t_n=b$
$delta(triangle)=displaystylemax_1 leq k leq n(t_k+1-t_k)$



and $pi$ be a partition sequence, that is
$pi=triangle_n:triangle_nsubseteqtriangle_n+1, delta(triangle_n)to0$.



Let the variation of $g$ over $triangle$ be $triangle(g)=sum_k=0^n-1(g(t_k-1)-g(t_k))$



and let $pi(g)=limlimits_nto inftytriangle_n(g)$
and let $v(g)=displaystylesup_triangletriangle(g)$.



(a) Can we construct a function g and partition $pi$ such that $pi(g)<v(g)<infty$?



(b) If $g$ is either right or left continuous at each point of [a,b], is $pi(g)=v(g)$ for any $pi$?







real-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 17 at 12:24









Bernard

123k741117




123k741117










asked Mar 17 at 12:11









mathgogomathgogo

1




1











  • $begingroup$
    I think an absolute value sign is missing in your definition of $Delta (g)$.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:54










  • $begingroup$
    Any strictly increasing function meets the requirements in a). The answer to b) is NO.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:56

















  • $begingroup$
    I think an absolute value sign is missing in your definition of $Delta (g)$.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:54










  • $begingroup$
    Any strictly increasing function meets the requirements in a). The answer to b) is NO.
    $endgroup$
    – Kavi Rama Murthy
    Mar 17 at 12:56
















$begingroup$
I think an absolute value sign is missing in your definition of $Delta (g)$.
$endgroup$
– Kavi Rama Murthy
Mar 17 at 12:54




$begingroup$
I think an absolute value sign is missing in your definition of $Delta (g)$.
$endgroup$
– Kavi Rama Murthy
Mar 17 at 12:54












$begingroup$
Any strictly increasing function meets the requirements in a). The answer to b) is NO.
$endgroup$
– Kavi Rama Murthy
Mar 17 at 12:56





$begingroup$
Any strictly increasing function meets the requirements in a). The answer to b) is NO.
$endgroup$
– Kavi Rama Murthy
Mar 17 at 12:56











0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151469%2fcan-we-construct-a-function-g-and-a-partition-pi-such-that-pigvg-in%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151469%2fcan-we-construct-a-function-g-and-a-partition-pi-such-that-pigvg-in%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye