Proving $beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix=-(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$Calculate $beginVmatrix1&2\2&4endVmatrix$Compute the determinant $beginvmatrix sin x & cos x \ -sin y & cos y endvmatrix$ using the Sarrus' ruleProving a determinant equalityTo show: $beginvmatrix -bc & b^2+bc & c^2+bc\ a^2+ac & -ac & c^2+ac \ a^2+ab & b^2+ab & -ab endvmatrix= (ab+bc+ca)^3$Find the value of the determinant $scriptsize beginvmatrix 8-x & -10 & 6 \ 8 & -9-x & -1 \ 16 & -15 & 9-x endvmatrix$Given $beginvmatrix p & q & r \ s & t & u \ v & w & x endvmatrix = -3$, find $beginvmatrixp&2q&5r+4p\s&2t&5u+4s\v&2w&5x+4vendvmatrix$.$beginvmatrix 1 & a &bc \ 1& b & ac\ 1&c & ab endvmatrix=beginvmatrix 1 & a &a^2 \ 1& b&b^2 \ 1& b & c^2 endvmatrix$Prove that $beginvmatrix xa&yb&zc\ yc&za&xb\ zb&xc&ya\ endvmatrix=xyzbeginvmatrix a&b&c\ c&a&b\ b&c&a\ endvmatrix$ if $x+y+z=0$Prove the equality: $beginvmatrix -2a &a+b &a+c \ b+a&-2b &b+c \ c+a&c+b &-2c endvmatrix = 4(a+b)(b+c)(c+a)$Determinant of beginvmatrix -2a &a+b &a+c \ b+a& -2b &b+c \ c+a&c+b & -2c endvmatrix

Teaching indefinite integrals that require special-casing

How can I use the arrow sign in my bash prompt?

Your magic is very sketchy

Why Were Madagascar and New Zealand Discovered So Late?

Should my PhD thesis be submitted under my legal name?

Why "be dealt cards" rather than "be dealing cards"?

Can criminal fraud exist without damages?

Curses work by shouting - How to avoid collateral damage?

Applicability of Single Responsibility Principle

The baby cries all morning

How does a character multiclassing into warlock get a focus?

Is there an Impartial Brexit Deal comparison site?

Personal Teleportation as a Weapon

What is the oldest known work of fiction?

What's the purpose of "true" in bash "if sudo true; then"

What would be the benefits of having both a state and local currencies?

Can a monster with multiattack use this ability if they are missing a limb?

Where in the Bible does the greeting ("Dominus Vobiscum") used at Mass come from?

The plural of 'stomach"

Implement the Thanos sorting algorithm

Generic lambda vs generic function give different behaviour

Bash method for viewing beginning and end of file

How do I define a right arrow with bar in LaTeX?

What's a natural way to say that someone works somewhere (for a job)?



Proving $beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix=-(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$


Calculate $beginVmatrix1&2\2&4endVmatrix$Compute the determinant $beginvmatrix sin x & cos x \ -sin y & cos y endvmatrix$ using the Sarrus' ruleProving a determinant equalityTo show: $beginvmatrix -bc & b^2+bc & c^2+bc\ a^2+ac & -ac & c^2+ac \ a^2+ab & b^2+ab & -ab endvmatrix= (ab+bc+ca)^3$Find the value of the determinant $scriptsize beginvmatrix 8-x & -10 & 6 \ 8 & -9-x & -1 \ 16 & -15 & 9-x endvmatrix$Given $beginvmatrix p & q & r \ s & t & u \ v & w & x endvmatrix = -3$, find $beginvmatrixp&2q&5r+4p\s&2t&5u+4s\v&2w&5x+4vendvmatrix$.$beginvmatrix 1 & a &bc \ 1& b & ac\ 1&c & ab endvmatrix=beginvmatrix 1 & a &a^2 \ 1& b&b^2 \ 1& b & c^2 endvmatrix$Prove that $beginvmatrix xa&yb&zc\ yc&za&xb\ zb&xc&ya\ endvmatrix=xyzbeginvmatrix a&b&c\ c&a&b\ b&c&a\ endvmatrix$ if $x+y+z=0$Prove the equality: $beginvmatrix -2a &a+b &a+c \ b+a&-2b &b+c \ c+a&c+b &-2c endvmatrix = 4(a+b)(b+c)(c+a)$Determinant of beginvmatrix -2a &a+b &a+c \ b+a& -2b &b+c \ c+a&c+b & -2c endvmatrix













0












$begingroup$



Prove:$$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix=-(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$




I tried to use the Laplace expansion, but it seems useless.










share|cite|improve this question











$endgroup$
















    0












    $begingroup$



    Prove:$$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix=-(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$




    I tried to use the Laplace expansion, but it seems useless.










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$



      Prove:$$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix=-(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$




      I tried to use the Laplace expansion, but it seems useless.










      share|cite|improve this question











      $endgroup$





      Prove:$$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix=-(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$




      I tried to use the Laplace expansion, but it seems useless.







      matrices determinant






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 17 at 12:54









      Rodrigo de Azevedo

      13.2k41960




      13.2k41960










      asked Mar 17 at 12:06









      DavidDavid

      644




      644




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Hint:



          $C_1'=C_1+C_2+C_3$



          $$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix$$



          $$=beginvmatrixa+b+c&b&c\b+c+a&c&a\c+a+b&a&bendvmatrix$$



          $$=(a+b+c)beginvmatrix1&b&c\1&c&a\1&a&bendvmatrix$$



          Now either expand or



          use $R_2'=R_2-R_1, R_3'=R_3-R_1$






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151461%2fproving-beginvmatrixabc-bca-cab-endvmatrix-abca2b2c2-ab%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Hint:



            $C_1'=C_1+C_2+C_3$



            $$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix$$



            $$=beginvmatrixa+b+c&b&c\b+c+a&c&a\c+a+b&a&bendvmatrix$$



            $$=(a+b+c)beginvmatrix1&b&c\1&c&a\1&a&bendvmatrix$$



            Now either expand or



            use $R_2'=R_2-R_1, R_3'=R_3-R_1$






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Hint:



              $C_1'=C_1+C_2+C_3$



              $$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix$$



              $$=beginvmatrixa+b+c&b&c\b+c+a&c&a\c+a+b&a&bendvmatrix$$



              $$=(a+b+c)beginvmatrix1&b&c\1&c&a\1&a&bendvmatrix$$



              Now either expand or



              use $R_2'=R_2-R_1, R_3'=R_3-R_1$






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Hint:



                $C_1'=C_1+C_2+C_3$



                $$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix$$



                $$=beginvmatrixa+b+c&b&c\b+c+a&c&a\c+a+b&a&bendvmatrix$$



                $$=(a+b+c)beginvmatrix1&b&c\1&c&a\1&a&bendvmatrix$$



                Now either expand or



                use $R_2'=R_2-R_1, R_3'=R_3-R_1$






                share|cite|improve this answer









                $endgroup$



                Hint:



                $C_1'=C_1+C_2+C_3$



                $$beginvmatrixa&b&c\b&c&a\c&a&bendvmatrix$$



                $$=beginvmatrixa+b+c&b&c\b+c+a&c&a\c+a+b&a&bendvmatrix$$



                $$=(a+b+c)beginvmatrix1&b&c\1&c&a\1&a&bendvmatrix$$



                Now either expand or



                use $R_2'=R_2-R_1, R_3'=R_3-R_1$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 17 at 12:08









                lab bhattacharjeelab bhattacharjee

                227k15158278




                227k15158278



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151461%2fproving-beginvmatrixabc-bca-cab-endvmatrix-abca2b2c2-ab%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                    random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                    Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye