The Bayes predictor of the square loss is $Bbb E_P[Ymid X=x]$?What is the derivative of the cross entropy loss when extending an arbitrary predictor for multi class classification?Mean Square Error Minimization Conditioned On Multivariate Normal Random VariablesNotation in the derivative of the hinge loss functionsquare loss function in classificationProving that the Bayes optimal predictor is in fact optimalLet X : Ω → R be a random variable on a probability space that is normally distributed.The Bayes optimal predictor is optimalhinge loss vs. square of hinge loss componentsBayes (optimal) classifier for binary classification with asymmetric loss functionInequality for Log Concave Distributions

How will losing mobility of one hand affect my career as a programmer?

How can a jailer prevent the Forge Cleric's Artisan's Blessing from being used?

Products and sum of cubes in Fibonacci

What is the oldest known work of fiction?

Why does John Bercow say “unlock” after reading out the results of a vote?

Finding all intervals that match predicate in vector

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

Why "be dealt cards" rather than "be dealing cards"?

Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?

Can I Retrieve Email Addresses from BCC?

Why Were Madagascar and New Zealand Discovered So Late?

Teaching indefinite integrals that require special-casing

Ways to speed up user implemented RK4

How does it work when somebody invests in my business?

Should my PhD thesis be submitted under my legal name?

Can somebody explain Brexit in a few child-proof sentences?

What would be the benefits of having both a state and local currencies?

Displaying the order of the columns of a table

Valid Badminton Score?

Lay out the Carpet

Is there an Impartial Brexit Deal comparison site?

How can I replace every global instance of "x[2]" with "x_2"

How could Frankenstein get the parts for his _second_ creature?

There is only s̶i̶x̶t̶y one place he can be



The Bayes predictor of the square loss is $Bbb E_P[Ymid X=x]$?


What is the derivative of the cross entropy loss when extending an arbitrary predictor for multi class classification?Mean Square Error Minimization Conditioned On Multivariate Normal Random VariablesNotation in the derivative of the hinge loss functionsquare loss function in classificationProving that the Bayes optimal predictor is in fact optimalLet X : Ω → R be a random variable on a probability space that is normally distributed.The Bayes optimal predictor is optimalhinge loss vs. square of hinge loss componentsBayes (optimal) classifier for binary classification with asymmetric loss functionInequality for Log Concave Distributions













0












$begingroup$



Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?










share|cite|improve this question











$endgroup$





This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.











  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday















0












$begingroup$



Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?










share|cite|improve this question











$endgroup$





This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.











  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday













0












0








0





$begingroup$



Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?










share|cite|improve this question











$endgroup$





Let $(X,Y) in Bbb X times Bbb Y$ be jointly distributed according
to distribution $P$. Let $h: Bbb X rightarrow tilde Bbb Y$,
where $tilde Bbb Y$ is a predicted output. $ $Let $L(h,P) equiv
Bbb E_P[l(Y, h(X))]$
where $l$ is some loss function.



Show that $f = arg min_h L(h,P) = Bbb E_p[Y mid X = x]$ if $l$ is the
square loss function: $l(Y, h(X)) = (y - h(x))^2$




I figured I show this by showing any other $h$ leads to a larger $L(h,P)$ than $Bbb E_P[Ymid X=x]$.



I start with $$Bbb E_P[(y - Bbb E_p[Ymid X=x])^2] le Bbb E_P[(y - h(x))^2]$$



Then expanding we have:



$$Bbb E_P[y^2-2yBbb E_p[Y|X=x] + Bbb E_P[Ymid X=x]^2] le Bbb E_P[y^2 - 2yh(x) + h(x)^2]$$



And simplifying:



$$-2Bbb E_P[y]Bbb E_p[Ymid X=x] + Bbb E_P[Ymid X=x]^2 le -2Bbb E_P[yh(x)] + Bbb E_P[h(x)^2]$$



But from here I'm a little stuck as to how to continue.



Does anyone have any ideas?







probability machine-learning






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 17 at 12:39









Bernard

123k741117




123k741117










asked Mar 17 at 12:33









Oliver GOliver G

1,3651632




1,3651632






This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.








This question has an open bounty worth +100
reputation from Oliver G ending ending at 2019-04-01 18:27:16Z">in 6 days.


Looking for an answer drawing from credible and/or official sources.









  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday












  • 1




    $begingroup$
    You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
    $endgroup$
    – Minus One-Twelfth
    Mar 17 at 14:04










  • $begingroup$
    "I start with" You don't start with your desired conclusion. You start with what you know.
    $endgroup$
    – leonbloy
    yesterday










  • $begingroup$
    The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
    $endgroup$
    – Saad
    yesterday







1




1




$begingroup$
You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
$endgroup$
– Minus One-Twelfth
Mar 17 at 14:04




$begingroup$
You want to show that the conditional expectation minimises the square loss. You can find discussion of this here: stats.stackexchange.com/questions/71863/….
$endgroup$
– Minus One-Twelfth
Mar 17 at 14:04












$begingroup$
"I start with" You don't start with your desired conclusion. You start with what you know.
$endgroup$
– leonbloy
yesterday




$begingroup$
"I start with" You don't start with your desired conclusion. You start with what you know.
$endgroup$
– leonbloy
yesterday












$begingroup$
The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
$endgroup$
– Saad
yesterday




$begingroup$
The link given by MinusOne-Twelfth has effectively answered the question in details. Is there anything else you'd like to know?
$endgroup$
– Saad
yesterday










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151486%2fthe-bayes-predictor-of-the-square-loss-is-bbb-e-py-mid-x-x%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151486%2fthe-bayes-predictor-of-the-square-loss-is-bbb-e-py-mid-x-x%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers