Let $z = e^ frac 2pi i7 $ and let $p = z+z^2+z^4 $.Then which of the following options are correct?cube root of 2 not in Q(primitive root)For which of the following fields $mathbb F$ the polynomial $x^3-312312x+123123$ is irreducible in $mathbb F[x]$?Perfect field of characteristic $p>0$ which is not an algebraic extension of the prime fieldLet $F$ be a field of 8 elements and $A$= $xin F$. Then the number of elements in A isWhich of these statements about the field extension $mathbbR/mathbbQ$ are true?Let $(F,+,cdot)$ is the finite field with $9$ elements. Then which of the following are true?Which of the following field properties are correct?Are the following options correct in case of a field?Are the extensions $mathbbQ(sqrt2,sqrt3)$ and $mathbbQ(sqrt[3]5)$ normal over $mathbbQ$A problem from Neukirch's algebraic number theory book.

Multi tool use
Multi tool use

What is Tony Stark injecting into himself in Iron Man 3?

Why is a very small peak with larger m/z not considered to be the molecular ion?

In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?

Windows Server Datacenter Edition - Unlimited Virtual Machines

Specifying a starting column with colortbl package and xcolor

What problems would a superhuman have who's skin is constantly hot?

Doubts in understanding some concepts of potential energy

Why is gluten-free baking possible?

What materials can be used to make a humanoid skin warm?

Signed and unsigned numbers

Does an unused member variable take up memory?

Is it possible to avoid unpacking when merging Association?

Outlet with 3 sets of wires

When a wind turbine does not produce enough electricity how does the power company compensate for the loss?

How does Ehrenfest's theorem apply to the quantum harmonic oscillator?

Getting the || sign while using Kurier

Is it possible that a question has only two answers?

What is this diamond of every day?

What would be the most expensive material to an intergalactic society?

Source permutation

Proving a statement about real numbers

Is it safe to abruptly remove Arduino power?

How do we create new idioms and use them in a novel?

What do you call someone who likes to pick fights?



Let $z = e^ frac 2pi i7 $ and let $p = z+z^2+z^4 $.Then which of the following options are correct?


cube root of 2 not in Q(primitive root)For which of the following fields $mathbb F$ the polynomial $x^3-312312x+123123$ is irreducible in $mathbb F[x]$?Perfect field of characteristic $p>0$ which is not an algebraic extension of the prime fieldLet $F$ be a field of 8 elements and $A$= $xin F$. Then the number of elements in A isWhich of these statements about the field extension $mathbbR/mathbbQ$ are true?Let $(F,+,cdot)$ is the finite field with $9$ elements. Then which of the following are true?Which of the following field properties are correct?Are the following options correct in case of a field?Are the extensions $mathbbQ(sqrt2,sqrt3)$ and $mathbbQ(sqrt[3]5)$ normal over $mathbbQ$A problem from Neukirch's algebraic number theory book.













1












$begingroup$


Let $z= e^ frac 2pi i7 $ and let $p= z+z^2+z^4 $ then



  1. $p$ is in $ mathbb Q $


  2. $p$ is in $ mathbbQ (sqrt D) $ for some $D gt 0$


  3. $p$ is in $ mathbbQ(sqrt D) $ for some $D lt 0$


  4. $p$ is in $i mathbb R $


Option $1$ is clearly false. please give me some hints for other options.



Thanks in advance.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Look up Gauss sums. This local search should give you enough.
    $endgroup$
    – Jyrki Lahtonen
    yesterday















1












$begingroup$


Let $z= e^ frac 2pi i7 $ and let $p= z+z^2+z^4 $ then



  1. $p$ is in $ mathbb Q $


  2. $p$ is in $ mathbbQ (sqrt D) $ for some $D gt 0$


  3. $p$ is in $ mathbbQ(sqrt D) $ for some $D lt 0$


  4. $p$ is in $i mathbb R $


Option $1$ is clearly false. please give me some hints for other options.



Thanks in advance.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Look up Gauss sums. This local search should give you enough.
    $endgroup$
    – Jyrki Lahtonen
    yesterday













1












1








1


1



$begingroup$


Let $z= e^ frac 2pi i7 $ and let $p= z+z^2+z^4 $ then



  1. $p$ is in $ mathbb Q $


  2. $p$ is in $ mathbbQ (sqrt D) $ for some $D gt 0$


  3. $p$ is in $ mathbbQ(sqrt D) $ for some $D lt 0$


  4. $p$ is in $i mathbb R $


Option $1$ is clearly false. please give me some hints for other options.



Thanks in advance.










share|cite|improve this question











$endgroup$




Let $z= e^ frac 2pi i7 $ and let $p= z+z^2+z^4 $ then



  1. $p$ is in $ mathbb Q $


  2. $p$ is in $ mathbbQ (sqrt D) $ for some $D gt 0$


  3. $p$ is in $ mathbbQ(sqrt D) $ for some $D lt 0$


  4. $p$ is in $i mathbb R $


Option $1$ is clearly false. please give me some hints for other options.



Thanks in advance.







field-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









SNEHIL SANYAL

618110




618110










asked yesterday









suchanda adhikarisuchanda adhikari

807




807







  • 1




    $begingroup$
    Look up Gauss sums. This local search should give you enough.
    $endgroup$
    – Jyrki Lahtonen
    yesterday












  • 1




    $begingroup$
    Look up Gauss sums. This local search should give you enough.
    $endgroup$
    – Jyrki Lahtonen
    yesterday







1




1




$begingroup$
Look up Gauss sums. This local search should give you enough.
$endgroup$
– Jyrki Lahtonen
yesterday




$begingroup$
Look up Gauss sums. This local search should give you enough.
$endgroup$
– Jyrki Lahtonen
yesterday










2 Answers
2






active

oldest

votes


















4












$begingroup$

Note that
$$p^2=z^2+z^4+z+2z^3+2z^5+2z^6=-p-2+2(1+z+z^2+z^3+z^4+z^5+z^6)$$
and $1+z+cdots+z^6=0$.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    Since $p^ast=z^6+z^5+z^3=z^2p$ and $z^2nepm1$, $p$ is neither real nor imaginary. eliminating $1$, $2$ and $4$. As Lord Shark the Unknown already noted, $p^2+p+2implies p=frac-1pmsqrt-72$ so option $3$ is correct.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
      $endgroup$
      – suchanda adhikari
      yesterday






    • 1




      $begingroup$
      @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
      $endgroup$
      – J.G.
      yesterday










    • $begingroup$
      yes but is it possible to determine the sign easily?
      $endgroup$
      – suchanda adhikari
      yesterday






    • 1




      $begingroup$
      @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
      $endgroup$
      – Jyrki Lahtonen
      yesterday











    • $begingroup$
      Thank you sir I will do it.
      $endgroup$
      – suchanda adhikari
      yesterday










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3141005%2flet-z-e-frac-2-pi-i7-and-let-p-zz2z4-then-which-of-the-fol%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Note that
    $$p^2=z^2+z^4+z+2z^3+2z^5+2z^6=-p-2+2(1+z+z^2+z^3+z^4+z^5+z^6)$$
    and $1+z+cdots+z^6=0$.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Note that
      $$p^2=z^2+z^4+z+2z^3+2z^5+2z^6=-p-2+2(1+z+z^2+z^3+z^4+z^5+z^6)$$
      and $1+z+cdots+z^6=0$.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Note that
        $$p^2=z^2+z^4+z+2z^3+2z^5+2z^6=-p-2+2(1+z+z^2+z^3+z^4+z^5+z^6)$$
        and $1+z+cdots+z^6=0$.






        share|cite|improve this answer









        $endgroup$



        Note that
        $$p^2=z^2+z^4+z+2z^3+2z^5+2z^6=-p-2+2(1+z+z^2+z^3+z^4+z^5+z^6)$$
        and $1+z+cdots+z^6=0$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        Lord Shark the UnknownLord Shark the Unknown

        106k1161133




        106k1161133





















            3












            $begingroup$

            Since $p^ast=z^6+z^5+z^3=z^2p$ and $z^2nepm1$, $p$ is neither real nor imaginary. eliminating $1$, $2$ and $4$. As Lord Shark the Unknown already noted, $p^2+p+2implies p=frac-1pmsqrt-72$ so option $3$ is correct.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
              $endgroup$
              – J.G.
              yesterday










            • $begingroup$
              yes but is it possible to determine the sign easily?
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
              $endgroup$
              – Jyrki Lahtonen
              yesterday











            • $begingroup$
              Thank you sir I will do it.
              $endgroup$
              – suchanda adhikari
              yesterday















            3












            $begingroup$

            Since $p^ast=z^6+z^5+z^3=z^2p$ and $z^2nepm1$, $p$ is neither real nor imaginary. eliminating $1$, $2$ and $4$. As Lord Shark the Unknown already noted, $p^2+p+2implies p=frac-1pmsqrt-72$ so option $3$ is correct.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
              $endgroup$
              – J.G.
              yesterday










            • $begingroup$
              yes but is it possible to determine the sign easily?
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
              $endgroup$
              – Jyrki Lahtonen
              yesterday











            • $begingroup$
              Thank you sir I will do it.
              $endgroup$
              – suchanda adhikari
              yesterday













            3












            3








            3





            $begingroup$

            Since $p^ast=z^6+z^5+z^3=z^2p$ and $z^2nepm1$, $p$ is neither real nor imaginary. eliminating $1$, $2$ and $4$. As Lord Shark the Unknown already noted, $p^2+p+2implies p=frac-1pmsqrt-72$ so option $3$ is correct.






            share|cite|improve this answer











            $endgroup$



            Since $p^ast=z^6+z^5+z^3=z^2p$ and $z^2nepm1$, $p$ is neither real nor imaginary. eliminating $1$, $2$ and $4$. As Lord Shark the Unknown already noted, $p^2+p+2implies p=frac-1pmsqrt-72$ so option $3$ is correct.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday

























            answered yesterday









            J.G.J.G.

            29.4k22846




            29.4k22846











            • $begingroup$
              why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
              $endgroup$
              – J.G.
              yesterday










            • $begingroup$
              yes but is it possible to determine the sign easily?
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
              $endgroup$
              – Jyrki Lahtonen
              yesterday











            • $begingroup$
              Thank you sir I will do it.
              $endgroup$
              – suchanda adhikari
              yesterday
















            • $begingroup$
              why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
              $endgroup$
              – J.G.
              yesterday










            • $begingroup$
              yes but is it possible to determine the sign easily?
              $endgroup$
              – suchanda adhikari
              yesterday






            • 1




              $begingroup$
              @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
              $endgroup$
              – Jyrki Lahtonen
              yesterday











            • $begingroup$
              Thank you sir I will do it.
              $endgroup$
              – suchanda adhikari
              yesterday















            $begingroup$
            why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
            $endgroup$
            – suchanda adhikari
            yesterday




            $begingroup$
            why $ p= frac -1+sqrt -72 $ @J.G. ,please explain, I can't understand how you delete the possibility that p can be $ frac -1-sqrt -72 $
            $endgroup$
            – suchanda adhikari
            yesterday




            1




            1




            $begingroup$
            @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
            $endgroup$
            – J.G.
            yesterday




            $begingroup$
            @suchandaadhikari Sorry, I meant to write $pm$ there, which I do as of my latest edit. We don't need to determine the sign to work out which options are applicable.
            $endgroup$
            – J.G.
            yesterday












            $begingroup$
            yes but is it possible to determine the sign easily?
            $endgroup$
            – suchanda adhikari
            yesterday




            $begingroup$
            yes but is it possible to determine the sign easily?
            $endgroup$
            – suchanda adhikari
            yesterday




            1




            1




            $begingroup$
            @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
            $endgroup$
            – Jyrki Lahtonen
            yesterday





            $begingroup$
            @suchandaadhikari In general, no! Gauss himself spent a while figuring out the correct sign (for primes much larger than $7$), even though the solution is in many a book now. For $7$th roots of unity it is easy. Draw them on the complexplane. Surely you can figure which side of the real axis the sum is!
            $endgroup$
            – Jyrki Lahtonen
            yesterday













            $begingroup$
            Thank you sir I will do it.
            $endgroup$
            – suchanda adhikari
            yesterday




            $begingroup$
            Thank you sir I will do it.
            $endgroup$
            – suchanda adhikari
            yesterday

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3141005%2flet-z-e-frac-2-pi-i7-and-let-p-zz2z4-then-which-of-the-fol%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            w2EeWP3pRMLSU55
            TeulOt5UiQznQLYDyBq1JZzHhvJdIjk4R

            Popular posts from this blog

            Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

            Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

            Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee