‎Is the functional sequence ‎$f_n(x)$ ‎uniformly ‎convergent‎ ‎on ‎$‎[1, 2]‎$‎? The Next CEO of Stack OverflowChecking if $f_n$ or $sum f_n$converges uniformlyDoes $(f_n)$ converge pointwise/uniformly on $I$?The sequences $f_n,f_n'$ both are uniformly convergent on $[0,1]$.If a sequence of unif. cont. Lipschitz functions $f_n$ converges unif. to an unif. cont. function f, then f is Lipschitz.Pick out the sequences which are uniformly convergent:Show that $f_n(x)=frac1x+n$ converges uniformly on $0leq x leq 1$?Counterexample for functional sequence $f_n$ that converges uniformly on $E=[0;A]$ but not on $E=[0;+infty)$Proving if $f_n$ converges uniformly.Uniform convergence of a sequence of functions on $[0, 1]$Uniform Convergence of $f_n^k$ and polynomial

How to avoid supervisors with prejudiced views?

What does convergence in distribution "in the Gromov–Hausdorff" sense mean?

Why does standard notation not preserve intervals (visually)

Written every which way

Skipping indices in a product

Would a galaxy be visible from outside, but nearby?

Indicator light circuit

Is it professional to write unrelated content in an almost-empty email?

Why am I allowed to create multiple unique pointers from a single object?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Should I tutor a student who I know has cheated on their homework?

How fast would a person need to move to trick the eye?

Can you replace a racial trait cantrip when leveling up?

If a black hole is created from light, can this black hole then move at speed of light?

Is there a difference between "Fahrstuhl" and "Aufzug"

Is micro rebar a better way to reinforce concrete than rebar?

Anatomically Correct Strange Women In Ponds Distributing Swords

How do I avoid eval and parse?

sp_blitzCache results Memory grants

Received an invoice from my ex-employer billing me for training; how to handle?

What connection does MS Office have to Netscape Navigator?

Why do airplanes bank sharply to the right after air-to-air refueling?

Return the Closest Prime Number

What is "(CFMCC)" on an ILS approach chart?



‎Is the functional sequence ‎$f_n(x)$ ‎uniformly ‎convergent‎ ‎on ‎$‎[1, 2]‎$‎?



The Next CEO of Stack OverflowChecking if $f_n$ or $sum f_n$converges uniformlyDoes $(f_n)$ converge pointwise/uniformly on $I$?The sequences $f_n,f_n'$ both are uniformly convergent on $[0,1]$.If a sequence of unif. cont. Lipschitz functions $f_n$ converges unif. to an unif. cont. function f, then f is Lipschitz.Pick out the sequences which are uniformly convergent:Show that $f_n(x)=frac1x+n$ converges uniformly on $0leq x leq 1$?Counterexample for functional sequence $f_n$ that converges uniformly on $E=[0;A]$ but not on $E=[0;+infty)$Proving if $f_n$ converges uniformly.Uniform convergence of a sequence of functions on $[0, 1]$Uniform Convergence of $f_n^k$ and polynomial










1












$begingroup$


Consider the functional sequence
‎‎beginalign*‎
‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
‎‎endalign*
‎‎‎
Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
(Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    Consider the functional sequence
    ‎‎beginalign*‎
    ‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
    ‎‎endalign*
    ‎‎‎
    Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



    ‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
    but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
    (Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Consider the functional sequence
      ‎‎beginalign*‎
      ‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
      ‎‎endalign*
      ‎‎‎
      Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



      ‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
      but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
      (Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.










      share|cite|improve this question









      $endgroup$




      Consider the functional sequence
      ‎‎beginalign*‎
      ‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
      ‎‎endalign*
      ‎‎‎
      Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



      ‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
      but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
      (Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.







      real-analysis calculus sequences-and-series uniform-convergence






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 18 at 20:10









      koohyar eslamikoohyar eslami

      22727




      22727




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153257%2fis-the-functional-sequence-f-nx-uniformly-convergent-on-1-2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06















          1












          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06













          1












          1








          1





          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$



          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 18 at 20:20









          robjohnrobjohn

          270k27312640




          270k27312640











          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06
















          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06















          $begingroup$
          robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
          $endgroup$
          – koohyar eslami
          Mar 19 at 4:43




          $begingroup$
          robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
          $endgroup$
          – koohyar eslami
          Mar 19 at 4:43




          1




          1




          $begingroup$
          @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
          $endgroup$
          – robjohn
          Mar 19 at 8:06




          $begingroup$
          @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
          $endgroup$
          – robjohn
          Mar 19 at 8:06

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153257%2fis-the-functional-sequence-f-nx-uniformly-convergent-on-1-2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

          Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers