‎Is the functional sequence ‎$f_n(x)$ ‎uniformly ‎convergent‎ ‎on ‎$‎[1, 2]‎$‎? The Next CEO of Stack OverflowChecking if $f_n$ or $sum f_n$converges uniformlyDoes $(f_n)$ converge pointwise/uniformly on $I$?The sequences $f_n,f_n'$ both are uniformly convergent on $[0,1]$.If a sequence of unif. cont. Lipschitz functions $f_n$ converges unif. to an unif. cont. function f, then f is Lipschitz.Pick out the sequences which are uniformly convergent:Show that $f_n(x)=frac1x+n$ converges uniformly on $0leq x leq 1$?Counterexample for functional sequence $f_n$ that converges uniformly on $E=[0;A]$ but not on $E=[0;+infty)$Proving if $f_n$ converges uniformly.Uniform convergence of a sequence of functions on $[0, 1]$Uniform Convergence of $f_n^k$ and polynomial

How to avoid supervisors with prejudiced views?

What does convergence in distribution "in the Gromov–Hausdorff" sense mean?

Why does standard notation not preserve intervals (visually)

Written every which way

Skipping indices in a product

Would a galaxy be visible from outside, but nearby?

Indicator light circuit

Is it professional to write unrelated content in an almost-empty email?

Why am I allowed to create multiple unique pointers from a single object?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Should I tutor a student who I know has cheated on their homework?

How fast would a person need to move to trick the eye?

Can you replace a racial trait cantrip when leveling up?

If a black hole is created from light, can this black hole then move at speed of light?

Is there a difference between "Fahrstuhl" and "Aufzug"

Is micro rebar a better way to reinforce concrete than rebar?

Anatomically Correct Strange Women In Ponds Distributing Swords

How do I avoid eval and parse?

sp_blitzCache results Memory grants

Received an invoice from my ex-employer billing me for training; how to handle?

What connection does MS Office have to Netscape Navigator?

Why do airplanes bank sharply to the right after air-to-air refueling?

Return the Closest Prime Number

What is "(CFMCC)" on an ILS approach chart?



‎Is the functional sequence ‎$f_n(x)$ ‎uniformly ‎convergent‎ ‎on ‎$‎[1, 2]‎$‎?



The Next CEO of Stack OverflowChecking if $f_n$ or $sum f_n$converges uniformlyDoes $(f_n)$ converge pointwise/uniformly on $I$?The sequences $f_n,f_n'$ both are uniformly convergent on $[0,1]$.If a sequence of unif. cont. Lipschitz functions $f_n$ converges unif. to an unif. cont. function f, then f is Lipschitz.Pick out the sequences which are uniformly convergent:Show that $f_n(x)=frac1x+n$ converges uniformly on $0leq x leq 1$?Counterexample for functional sequence $f_n$ that converges uniformly on $E=[0;A]$ but not on $E=[0;+infty)$Proving if $f_n$ converges uniformly.Uniform convergence of a sequence of functions on $[0, 1]$Uniform Convergence of $f_n^k$ and polynomial










1












$begingroup$


Consider the functional sequence
‎‎beginalign*‎
‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
‎‎endalign*
‎‎‎
Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
(Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    Consider the functional sequence
    ‎‎beginalign*‎
    ‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
    ‎‎endalign*
    ‎‎‎
    Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



    ‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
    but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
    (Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Consider the functional sequence
      ‎‎beginalign*‎
      ‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
      ‎‎endalign*
      ‎‎‎
      Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



      ‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
      but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
      (Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.










      share|cite|improve this question









      $endgroup$




      Consider the functional sequence
      ‎‎beginalign*‎
      ‎f_n(x) = ‎sqrtn+1 - sqrtn+2 + sum_k=1^n ‎frac12sqrtk+x+2 - ‎‎‎‎frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
      ‎‎endalign*
      ‎‎‎
      Is ‎$‎f_n(x)‎$ ‎uniformly ‎convergent ‎on ‎‎$‎[1, 2]‎$?‎



      ‎ I‎ ‎know ‎that ‎‎$f(x) =‎ displaystylelim_ntoinftyf_n(x) = sum_k=1^infty‎frac12‎sqrtk+x+2‎ - ‎‎‎‎‎frac12‎sqrtk+x+1‎‎ = ‎‎‎‎frac-12‎sqrtx+2‎‎‎‎$,‎
      but I do not know how to use the supremm test‎. ‎Please ‎guide ‎me?‎
      (Let ‎$‎M_n = sup|f_n(x) - f(x)|‎$‎, so ‎$‎f_n‎‎rightarrow ‎f‎$ ‎is ‎uniformly ‎convergent ‎on ‎‎$‎E‎$ ‎if ‎and ‎only ‎if ‎‎$‎M_n‎‎rightarrow ‎0‎$ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎)‎.







      real-analysis calculus sequences-and-series uniform-convergence






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 18 at 20:10









      koohyar eslamikoohyar eslami

      22727




      22727




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153257%2fis-the-functional-sequence-f-nx-uniformly-convergent-on-1-2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06















          1












          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06













          1












          1








          1





          $begingroup$

          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?






          share|cite|improve this answer









          $endgroup$



          For $xin[1,2]$,
          $$
          beginalign‎
          ‎f_n(x)
          &=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
          &=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
          ‎‎endalign
          $$

          Can you finish from here?







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 18 at 20:20









          robjohnrobjohn

          270k27312640




          270k27312640











          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06
















          • $begingroup$
            robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
            $endgroup$
            – koohyar eslami
            Mar 19 at 4:43






          • 1




            $begingroup$
            @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
            $endgroup$
            – robjohn
            Mar 19 at 8:06















          $begingroup$
          robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
          $endgroup$
          – koohyar eslami
          Mar 19 at 4:43




          $begingroup$
          robjohn. Thanks. ‎$‎M_n = sup|f_n(x) - f(x)| = sup|‎frac-1‎sqrtn+1 + ‎sqrtn+2‎ + ‎‎frac12‎sqrtn+x+2‎ - ‎‎frac12‎sqrtx+2‎‎ + ‎‎frac12‎sqrtx+2‎|‎leq ‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎‎‎‎‎‎‎‎‎‎‎‎$, since‎ ‎‎‎$‎displaystylelim_ntoinfty(‎‎frac12‎sqrtn+1‎+‎frac1‎sqrtn+3‎) = 0‎$‎ ‎as ‎‎$‎n‎‎rightarrow ‎infty‎$‎, so ‎‎$‎M_n‎‎rightarrow ‎0‎$. ‎I‎s it right?
          $endgroup$
          – koohyar eslami
          Mar 19 at 4:43




          1




          1




          $begingroup$
          @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
          $endgroup$
          – robjohn
          Mar 19 at 8:06




          $begingroup$
          @koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
          $endgroup$
          – robjohn
          Mar 19 at 8:06

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153257%2fis-the-functional-sequence-f-nx-uniformly-convergent-on-1-2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

          random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

          Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye