Is the functional sequence $f_n(x)$ uniformly convergent on $[1, 2]$? The Next CEO of Stack OverflowChecking if $f_n$ or $sum f_n$converges uniformlyDoes $(f_n)$ converge pointwise/uniformly on $I$?The sequences $f_n,f_n'$ both are uniformly convergent on $[0,1]$.If a sequence of unif. cont. Lipschitz functions $f_n$ converges unif. to an unif. cont. function f, then f is Lipschitz.Pick out the sequences which are uniformly convergent:Show that $f_n(x)=frac1x+n$ converges uniformly on $0leq x leq 1$?Counterexample for functional sequence $f_n$ that converges uniformly on $E=[0;A]$ but not on $E=[0;+infty)$Proving if $f_n$ converges uniformly.Uniform convergence of a sequence of functions on $[0, 1]$Uniform Convergence of $f_n^k$ and polynomial
How to avoid supervisors with prejudiced views?
What does convergence in distribution "in the Gromov–Hausdorff" sense mean?
Why does standard notation not preserve intervals (visually)
Written every which way
Skipping indices in a product
Would a galaxy be visible from outside, but nearby?
Indicator light circuit
Is it professional to write unrelated content in an almost-empty email?
Why am I allowed to create multiple unique pointers from a single object?
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
Should I tutor a student who I know has cheated on their homework?
How fast would a person need to move to trick the eye?
Can you replace a racial trait cantrip when leveling up?
If a black hole is created from light, can this black hole then move at speed of light?
Is there a difference between "Fahrstuhl" and "Aufzug"
Is micro rebar a better way to reinforce concrete than rebar?
Anatomically Correct Strange Women In Ponds Distributing Swords
How do I avoid eval and parse?
sp_blitzCache results Memory grants
Received an invoice from my ex-employer billing me for training; how to handle?
What connection does MS Office have to Netscape Navigator?
Why do airplanes bank sharply to the right after air-to-air refueling?
Return the Closest Prime Number
What is "(CFMCC)" on an ILS approach chart?
Is the functional sequence $f_n(x)$ uniformly convergent on $[1, 2]$?
The Next CEO of Stack OverflowChecking if $f_n$ or $sum f_n$converges uniformlyDoes $(f_n)$ converge pointwise/uniformly on $I$?The sequences $f_n,f_n'$ both are uniformly convergent on $[0,1]$.If a sequence of unif. cont. Lipschitz functions $f_n$ converges unif. to an unif. cont. function f, then f is Lipschitz.Pick out the sequences which are uniformly convergent:Show that $f_n(x)=frac1x+n$ converges uniformly on $0leq x leq 1$?Counterexample for functional sequence $f_n$ that converges uniformly on $E=[0;A]$ but not on $E=[0;+infty)$Proving if $f_n$ converges uniformly.Uniform convergence of a sequence of functions on $[0, 1]$Uniform Convergence of $f_n^k$ and polynomial
$begingroup$
Consider the functional sequence
beginalign*
f_n(x) = sqrtn+1 - sqrtn+2 + sum_k=1^n frac12sqrtk+x+2 - frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
endalign*
Is $f_n(x)$ uniformly convergent on $[1, 2]$?
I know that $f(x) = displaystylelim_ntoinftyf_n(x) = sum_k=1^inftyfrac12sqrtk+x+2 - frac12sqrtk+x+1 = frac-12sqrtx+2$,
but I do not know how to use the supremm test. Please guide me?
(Let $M_n = sup|f_n(x) - f(x)|$, so $f_nrightarrow f$ is uniformly convergent on $E$ if and only if $M_nrightarrow 0$ as $nrightarrow infty$).
real-analysis calculus sequences-and-series uniform-convergence
$endgroup$
add a comment |
$begingroup$
Consider the functional sequence
beginalign*
f_n(x) = sqrtn+1 - sqrtn+2 + sum_k=1^n frac12sqrtk+x+2 - frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
endalign*
Is $f_n(x)$ uniformly convergent on $[1, 2]$?
I know that $f(x) = displaystylelim_ntoinftyf_n(x) = sum_k=1^inftyfrac12sqrtk+x+2 - frac12sqrtk+x+1 = frac-12sqrtx+2$,
but I do not know how to use the supremm test. Please guide me?
(Let $M_n = sup|f_n(x) - f(x)|$, so $f_nrightarrow f$ is uniformly convergent on $E$ if and only if $M_nrightarrow 0$ as $nrightarrow infty$).
real-analysis calculus sequences-and-series uniform-convergence
$endgroup$
add a comment |
$begingroup$
Consider the functional sequence
beginalign*
f_n(x) = sqrtn+1 - sqrtn+2 + sum_k=1^n frac12sqrtk+x+2 - frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
endalign*
Is $f_n(x)$ uniformly convergent on $[1, 2]$?
I know that $f(x) = displaystylelim_ntoinftyf_n(x) = sum_k=1^inftyfrac12sqrtk+x+2 - frac12sqrtk+x+1 = frac-12sqrtx+2$,
but I do not know how to use the supremm test. Please guide me?
(Let $M_n = sup|f_n(x) - f(x)|$, so $f_nrightarrow f$ is uniformly convergent on $E$ if and only if $M_nrightarrow 0$ as $nrightarrow infty$).
real-analysis calculus sequences-and-series uniform-convergence
$endgroup$
Consider the functional sequence
beginalign*
f_n(x) = sqrtn+1 - sqrtn+2 + sum_k=1^n frac12sqrtk+x+2 - frac12sqrtk+x+1, (1leq xleq 2, n=1,2,3,...).
endalign*
Is $f_n(x)$ uniformly convergent on $[1, 2]$?
I know that $f(x) = displaystylelim_ntoinftyf_n(x) = sum_k=1^inftyfrac12sqrtk+x+2 - frac12sqrtk+x+1 = frac-12sqrtx+2$,
but I do not know how to use the supremm test. Please guide me?
(Let $M_n = sup|f_n(x) - f(x)|$, so $f_nrightarrow f$ is uniformly convergent on $E$ if and only if $M_nrightarrow 0$ as $nrightarrow infty$).
real-analysis calculus sequences-and-series uniform-convergence
real-analysis calculus sequences-and-series uniform-convergence
asked Mar 18 at 20:10
koohyar eslamikoohyar eslami
22727
22727
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $xin[1,2]$,
$$
beginalign
f_n(x)
&=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
&=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
endalign
$$
Can you finish from here?
$endgroup$
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
1
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153257%2fis-the-functional-sequence-f-nx-uniformly-convergent-on-1-2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $xin[1,2]$,
$$
beginalign
f_n(x)
&=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
&=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
endalign
$$
Can you finish from here?
$endgroup$
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
1
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
add a comment |
$begingroup$
For $xin[1,2]$,
$$
beginalign
f_n(x)
&=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
&=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
endalign
$$
Can you finish from here?
$endgroup$
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
1
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
add a comment |
$begingroup$
For $xin[1,2]$,
$$
beginalign
f_n(x)
&=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
&=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
endalign
$$
Can you finish from here?
$endgroup$
For $xin[1,2]$,
$$
beginalign
f_n(x)
&=sqrtn+1-sqrtn+2+sum_k=1^nleft(frac12sqrtk+x+2-frac12sqrtk+x+1right)\
&=-underbracefrac1sqrtn+1+sqrtn+2_lefrac12sqrtn+1+underbracefrac12sqrtx+n+2_lefrac12sqrtn+3-frac12sqrtx+2\
endalign
$$
Can you finish from here?
answered Mar 18 at 20:20
robjohn♦robjohn
270k27312640
270k27312640
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
1
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
add a comment |
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
1
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
$begingroup$
robjohn. Thanks. $M_n = sup|f_n(x) - f(x)| = sup|frac-1sqrtn+1 + sqrtn+2 + frac12sqrtn+x+2 - frac12sqrtx+2 + frac12sqrtx+2|leq frac12sqrtn+1+frac1sqrtn+3$, since $displaystylelim_ntoinfty(frac12sqrtn+1+frac1sqrtn+3) = 0$ as $nrightarrow infty$, so $M_nrightarrow 0$. Is it right?
$endgroup$
– koohyar eslami
Mar 19 at 4:43
1
1
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
$begingroup$
@koohyareslami: yes. The important point is that there is no dependence on $x$ in $sup|f_n-f|$.
$endgroup$
– robjohn♦
Mar 19 at 8:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153257%2fis-the-functional-sequence-f-nx-uniformly-convergent-on-1-2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown