How to show the following ring is not Noetherian The Next CEO of Stack OverflowHow to prove that this subring is not noetherian?If every ascending chain of primary ideals in $R$ stabilizes, is $R$ a Noetherian ring?Ascending chain “stabilizing temporarily” infinitely many timesGive an infinite sequence of principal ideals of $R$ such that the ascending chain condition does not holdDetermining if any of these three are an ideal of $mathbbR[x]$Looking for a special class of ideals such that If every ascending chain of ideals from this class stabilizes, then $R$ is a Noetherian ring.What does this field notation mean?Noetherian Rings Definition, countability?Prove that a polynomial ring over R in infinitely many variables is non-Noetherian.Infinite sums of ideals in a Noetherian ring

How did the Bene Gesserit know how to make a Kwisatz Haderach?

Why do airplanes bank sharply to the right after air-to-air refueling?

Is it professional to write unrelated content in an almost-empty email?

Would a completely good Muggle be able to use a wand?

WOW air has ceased operation, can I get my tickets refunded?

Complex fractions

Elegant way to replace substring in a regex with optional groups in Python?

Inappropriate reference requests from Journal reviewers

Why does the UK parliament need a vote on the political declaration?

What is "(CFMCC)" on an ILS approach chart?

How do I transpose the 1st and -1th levels of an arbitrarily nested array?

Would a galaxy be visible from outside, but nearby?

Has this building technique been used in an official set?

What does "Its cash flow is deeply negative" mean?

Bold, vivid family

In excess I'm lethal

How do we know the LHC results are robust?

How does the mv command work with external drives?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Return the Closest Prime Number

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Is there an analogue of projective spaces for proper schemes?

How did people program for Consoles with multiple CPUs?



How to show the following ring is not Noetherian



The Next CEO of Stack OverflowHow to prove that this subring is not noetherian?If every ascending chain of primary ideals in $R$ stabilizes, is $R$ a Noetherian ring?Ascending chain “stabilizing temporarily” infinitely many timesGive an infinite sequence of principal ideals of $R$ such that the ascending chain condition does not holdDetermining if any of these three are an ideal of $mathbbR[x]$Looking for a special class of ideals such that If every ascending chain of ideals from this class stabilizes, then $R$ is a Noetherian ring.What does this field notation mean?Noetherian Rings Definition, countability?Prove that a polynomial ring over R in infinitely many variables is non-Noetherian.Infinite sums of ideals in a Noetherian ring










0












$begingroup$



$R subset mathbbQ[x]$ be the subring consisting of polynomials $f = a_0 + a_1 x+cdots+a_n x^n$ s.t. $a_0in mathbbZ$. Show that $R$ is not a Noetherian ring.




Given a subgroup $Asubset mathbbQ$ (Abelian group under addition), consider the subset $Isubset R$ consisting of polynomials $a_1x+cdots+a_nx^n$ s.t. $a_1in A$.



My attempt: I've shown $I$ is an ideal and to construct an ascending chain of ideals, does this work?: Fix $a_1in A$, $<a_1x> subset<a_1x,x^2>subset....$

The main consideration is coefficient of $xin A$ which, I think, the chain above addresses and intuitively this chain does not stabilize but can I give a more rigorous statement why it doesn't? Thanks.










share|cite|improve this question











$endgroup$
















    0












    $begingroup$



    $R subset mathbbQ[x]$ be the subring consisting of polynomials $f = a_0 + a_1 x+cdots+a_n x^n$ s.t. $a_0in mathbbZ$. Show that $R$ is not a Noetherian ring.




    Given a subgroup $Asubset mathbbQ$ (Abelian group under addition), consider the subset $Isubset R$ consisting of polynomials $a_1x+cdots+a_nx^n$ s.t. $a_1in A$.



    My attempt: I've shown $I$ is an ideal and to construct an ascending chain of ideals, does this work?: Fix $a_1in A$, $<a_1x> subset<a_1x,x^2>subset....$

    The main consideration is coefficient of $xin A$ which, I think, the chain above addresses and intuitively this chain does not stabilize but can I give a more rigorous statement why it doesn't? Thanks.










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$



      $R subset mathbbQ[x]$ be the subring consisting of polynomials $f = a_0 + a_1 x+cdots+a_n x^n$ s.t. $a_0in mathbbZ$. Show that $R$ is not a Noetherian ring.




      Given a subgroup $Asubset mathbbQ$ (Abelian group under addition), consider the subset $Isubset R$ consisting of polynomials $a_1x+cdots+a_nx^n$ s.t. $a_1in A$.



      My attempt: I've shown $I$ is an ideal and to construct an ascending chain of ideals, does this work?: Fix $a_1in A$, $<a_1x> subset<a_1x,x^2>subset....$

      The main consideration is coefficient of $xin A$ which, I think, the chain above addresses and intuitively this chain does not stabilize but can I give a more rigorous statement why it doesn't? Thanks.










      share|cite|improve this question











      $endgroup$





      $R subset mathbbQ[x]$ be the subring consisting of polynomials $f = a_0 + a_1 x+cdots+a_n x^n$ s.t. $a_0in mathbbZ$. Show that $R$ is not a Noetherian ring.




      Given a subgroup $Asubset mathbbQ$ (Abelian group under addition), consider the subset $Isubset R$ consisting of polynomials $a_1x+cdots+a_nx^n$ s.t. $a_1in A$.



      My attempt: I've shown $I$ is an ideal and to construct an ascending chain of ideals, does this work?: Fix $a_1in A$, $<a_1x> subset<a_1x,x^2>subset....$

      The main consideration is coefficient of $xin A$ which, I think, the chain above addresses and intuitively this chain does not stabilize but can I give a more rigorous statement why it doesn't? Thanks.







      abstract-algebra ring-theory noetherian






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 20 at 10:21









      user26857

      39.5k124283




      39.5k124283










      asked Mar 18 at 20:06









      manifoldedmanifolded

      49519




      49519




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          It's unclear what your chain is, or how you expect it to continue, but note that as a graded ideal, your first ideal is $newcommandZZBbbZ0oplus a_1ZZ oplus newcommandQQBbbQQQoplus QQoplus cdots$
          already, since we can multiply by $fracqa_1x^i$ for $qinBbbQ$, $ige 1$. Thus your first ideal equals your second ideal.



          Indeed, $I$ can easily be finitely generated. If $A=BbbZ$ for example, then $I$ is generated by $x$, so $I$ is principal, so we wouldn't expect an ascending chain of ideals in $I$.



          Instead, let $I_A$ denote the ideal associated to the subgroup $A$.



          Then choose
          $$A_1subsetneq A_2subsetneq cdots subsetneq A_n subsetneq cdots$$
          a strictly ascending chain of subgroups of $BbbQ$. Perhaps $A_n = frac12^nBbbZ$. Then note that the ideals $I_A_n$ give a strictly ascending chain of ideals in $R$. Thus $R$ is not Noetherian.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
            $endgroup$
            – manifolded
            Mar 18 at 20:33











          • $begingroup$
            @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
            $endgroup$
            – jgon
            Mar 18 at 20:35











          • $begingroup$
            Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
            $endgroup$
            – manifolded
            Mar 18 at 20:37











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153249%2fhow-to-show-the-following-ring-is-not-noetherian%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          It's unclear what your chain is, or how you expect it to continue, but note that as a graded ideal, your first ideal is $newcommandZZBbbZ0oplus a_1ZZ oplus newcommandQQBbbQQQoplus QQoplus cdots$
          already, since we can multiply by $fracqa_1x^i$ for $qinBbbQ$, $ige 1$. Thus your first ideal equals your second ideal.



          Indeed, $I$ can easily be finitely generated. If $A=BbbZ$ for example, then $I$ is generated by $x$, so $I$ is principal, so we wouldn't expect an ascending chain of ideals in $I$.



          Instead, let $I_A$ denote the ideal associated to the subgroup $A$.



          Then choose
          $$A_1subsetneq A_2subsetneq cdots subsetneq A_n subsetneq cdots$$
          a strictly ascending chain of subgroups of $BbbQ$. Perhaps $A_n = frac12^nBbbZ$. Then note that the ideals $I_A_n$ give a strictly ascending chain of ideals in $R$. Thus $R$ is not Noetherian.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
            $endgroup$
            – manifolded
            Mar 18 at 20:33











          • $begingroup$
            @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
            $endgroup$
            – jgon
            Mar 18 at 20:35











          • $begingroup$
            Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
            $endgroup$
            – manifolded
            Mar 18 at 20:37















          1












          $begingroup$

          It's unclear what your chain is, or how you expect it to continue, but note that as a graded ideal, your first ideal is $newcommandZZBbbZ0oplus a_1ZZ oplus newcommandQQBbbQQQoplus QQoplus cdots$
          already, since we can multiply by $fracqa_1x^i$ for $qinBbbQ$, $ige 1$. Thus your first ideal equals your second ideal.



          Indeed, $I$ can easily be finitely generated. If $A=BbbZ$ for example, then $I$ is generated by $x$, so $I$ is principal, so we wouldn't expect an ascending chain of ideals in $I$.



          Instead, let $I_A$ denote the ideal associated to the subgroup $A$.



          Then choose
          $$A_1subsetneq A_2subsetneq cdots subsetneq A_n subsetneq cdots$$
          a strictly ascending chain of subgroups of $BbbQ$. Perhaps $A_n = frac12^nBbbZ$. Then note that the ideals $I_A_n$ give a strictly ascending chain of ideals in $R$. Thus $R$ is not Noetherian.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
            $endgroup$
            – manifolded
            Mar 18 at 20:33











          • $begingroup$
            @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
            $endgroup$
            – jgon
            Mar 18 at 20:35











          • $begingroup$
            Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
            $endgroup$
            – manifolded
            Mar 18 at 20:37













          1












          1








          1





          $begingroup$

          It's unclear what your chain is, or how you expect it to continue, but note that as a graded ideal, your first ideal is $newcommandZZBbbZ0oplus a_1ZZ oplus newcommandQQBbbQQQoplus QQoplus cdots$
          already, since we can multiply by $fracqa_1x^i$ for $qinBbbQ$, $ige 1$. Thus your first ideal equals your second ideal.



          Indeed, $I$ can easily be finitely generated. If $A=BbbZ$ for example, then $I$ is generated by $x$, so $I$ is principal, so we wouldn't expect an ascending chain of ideals in $I$.



          Instead, let $I_A$ denote the ideal associated to the subgroup $A$.



          Then choose
          $$A_1subsetneq A_2subsetneq cdots subsetneq A_n subsetneq cdots$$
          a strictly ascending chain of subgroups of $BbbQ$. Perhaps $A_n = frac12^nBbbZ$. Then note that the ideals $I_A_n$ give a strictly ascending chain of ideals in $R$. Thus $R$ is not Noetherian.






          share|cite|improve this answer









          $endgroup$



          It's unclear what your chain is, or how you expect it to continue, but note that as a graded ideal, your first ideal is $newcommandZZBbbZ0oplus a_1ZZ oplus newcommandQQBbbQQQoplus QQoplus cdots$
          already, since we can multiply by $fracqa_1x^i$ for $qinBbbQ$, $ige 1$. Thus your first ideal equals your second ideal.



          Indeed, $I$ can easily be finitely generated. If $A=BbbZ$ for example, then $I$ is generated by $x$, so $I$ is principal, so we wouldn't expect an ascending chain of ideals in $I$.



          Instead, let $I_A$ denote the ideal associated to the subgroup $A$.



          Then choose
          $$A_1subsetneq A_2subsetneq cdots subsetneq A_n subsetneq cdots$$
          a strictly ascending chain of subgroups of $BbbQ$. Perhaps $A_n = frac12^nBbbZ$. Then note that the ideals $I_A_n$ give a strictly ascending chain of ideals in $R$. Thus $R$ is not Noetherian.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 18 at 20:19









          jgonjgon

          16.1k32143




          16.1k32143











          • $begingroup$
            I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
            $endgroup$
            – manifolded
            Mar 18 at 20:33











          • $begingroup$
            @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
            $endgroup$
            – jgon
            Mar 18 at 20:35











          • $begingroup$
            Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
            $endgroup$
            – manifolded
            Mar 18 at 20:37
















          • $begingroup$
            I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
            $endgroup$
            – manifolded
            Mar 18 at 20:33











          • $begingroup$
            @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
            $endgroup$
            – jgon
            Mar 18 at 20:35











          • $begingroup$
            Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
            $endgroup$
            – manifolded
            Mar 18 at 20:37















          $begingroup$
          I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
          $endgroup$
          – manifolded
          Mar 18 at 20:33





          $begingroup$
          I see, I understand that $A_n = frac12^nmathbbZ$ is a strictly ascending chain of subgroups of $mathbbQ$ but am not sure what the elements of $I_A$ would look like and how we are guaranteed existence of an ideal associated to the subgroup $A$?
          $endgroup$
          – manifolded
          Mar 18 at 20:33













          $begingroup$
          @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
          $endgroup$
          – jgon
          Mar 18 at 20:35





          $begingroup$
          @manifolded That's what the ideal $I$ is in the question. It's the ideal associated to the subgroup $A$ from the question.
          $endgroup$
          – jgon
          Mar 18 at 20:35













          $begingroup$
          Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
          $endgroup$
          – manifolded
          Mar 18 at 20:37




          $begingroup$
          Ahh I see, I was thinking of ideals associated to the same subgroup earlier which is wrong, makes sense now.
          $endgroup$
          – manifolded
          Mar 18 at 20:37

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153249%2fhow-to-show-the-following-ring-is-not-noetherian%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

          Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers