If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ without assuming $(X,Y)$ has bivariate normal distribution? The Next CEO of Stack OverflowProving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$Prove that (X,Y) is bivariate normal if X is normal and Y conditionally on X is normal$P(X>0,Y>0)$ for a bivariate normal distribution with correlation $rho$Symmetric property for bivariate normal distributionBivariate normal distribution questionBivariate distribution with normal conditionsDistribution Theory - bivariate normal distributionQuestion on bivariate normal distributionDo we really need finite variances $mathrmVar(X)$ and $mathrmVar(Y)$ in the definition of covariance $mathrmCov(X,Y)$?Non-normal Bivariate distribution with normal marginsCorrelation coefficient of a bivariate normal distribution
How to count occurrences of text in a file?
Won the lottery - how do I keep the money?
Is it ever safe to open a suspicious html file (e.g. email attachment)?
Is "for causing autism in X" grammatical?
What was the first Unix version to run on a microcomputer?
What is the result of assigning to std::vector<T>::begin()?
What does convergence in distribution "in the Gromov–Hausdorff" sense mean?
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
Why do variable in an inner function return nan when there is the same variable name at the inner function declared after log
sp_blitzCache results Memory grants
Why do we use the plural of movies in this phrase "We went to the movies last night."?
Are there any limitations on attacking while grappling?
What does "Its cash flow is deeply negative" mean?
Is there a difference between "Fahrstuhl" and "Aufzug"
Do I need to enable Dev Hub in my PROD Org?
How to invert MapIndexed on a ragged structure? How to construct a tree from rules?
If the heap is zero-initialized for security, then why is the stack merely uninitialized?
Should I tutor a student who I know has cheated on their homework?
Complex fractions
Novel about a guy who is possessed by the divine essence and the world ends?
What is the purpose of the Evocation wizard's Potent Cantrip feature?
What can we do to stop prior company from asking us questions?
What flight has the highest ratio of time difference to flight time?
Can I run my washing machine drain line into a condensate pump so it drains better?
If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ without assuming $(X,Y)$ has bivariate normal distribution?
The Next CEO of Stack OverflowProving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$Prove that (X,Y) is bivariate normal if X is normal and Y conditionally on X is normal$P(X>0,Y>0)$ for a bivariate normal distribution with correlation $rho$Symmetric property for bivariate normal distributionBivariate normal distribution questionBivariate distribution with normal conditionsDistribution Theory - bivariate normal distributionQuestion on bivariate normal distributionDo we really need finite variances $mathrmVar(X)$ and $mathrmVar(Y)$ in the definition of covariance $mathrmCov(X,Y)$?Non-normal Bivariate distribution with normal marginsCorrelation coefficient of a bivariate normal distribution
$begingroup$
If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.
This question was asked before:
Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$
But can someone suggest an answer without assuming bivariate normal distribution?
probability-theory probability-distributions conditional-probability
$endgroup$
add a comment |
$begingroup$
If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.
This question was asked before:
Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$
But can someone suggest an answer without assuming bivariate normal distribution?
probability-theory probability-distributions conditional-probability
$endgroup$
1
$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49
$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55
$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07
add a comment |
$begingroup$
If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.
This question was asked before:
Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$
But can someone suggest an answer without assuming bivariate normal distribution?
probability-theory probability-distributions conditional-probability
$endgroup$
If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.
This question was asked before:
Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$
But can someone suggest an answer without assuming bivariate normal distribution?
probability-theory probability-distributions conditional-probability
probability-theory probability-distributions conditional-probability
edited Mar 18 at 22:02
Jack
27.6k1782203
27.6k1782203
asked Mar 18 at 10:33
Sri Krishna SahooSri Krishna Sahoo
620217
620217
1
$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49
$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55
$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07
add a comment |
1
$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49
$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55
$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07
1
1
$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49
$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49
$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55
$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55
$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07
$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:
$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$
$endgroup$
add a comment |
$begingroup$
Least squares method. Consider the squared residual that must be minimized:
$$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
(R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
colorgreensum_i=1^n x_iy_i\
colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
fracCov(X,Y)Var(X).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152630%2fif-ey-mid-x-abx-show-that-b-frac-mathrmcovx-y-mathrmvarx-w%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:
$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$
$endgroup$
add a comment |
$begingroup$
Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:
$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$
$endgroup$
add a comment |
$begingroup$
Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:
$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$
$endgroup$
Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:
$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$
answered Mar 18 at 11:05
drhabdrhab
104k545136
104k545136
add a comment |
add a comment |
$begingroup$
Least squares method. Consider the squared residual that must be minimized:
$$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
(R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
colorgreensum_i=1^n x_iy_i\
colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
fracCov(X,Y)Var(X).$$
$endgroup$
add a comment |
$begingroup$
Least squares method. Consider the squared residual that must be minimized:
$$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
(R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
colorgreensum_i=1^n x_iy_i\
colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
fracCov(X,Y)Var(X).$$
$endgroup$
add a comment |
$begingroup$
Least squares method. Consider the squared residual that must be minimized:
$$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
(R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
colorgreensum_i=1^n x_iy_i\
colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
fracCov(X,Y)Var(X).$$
$endgroup$
Least squares method. Consider the squared residual that must be minimized:
$$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
(R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
colorgreensum_i=1^n x_iy_i\
colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
fracCov(X,Y)Var(X).$$
answered Mar 18 at 13:04
farruhotafarruhota
21.7k2842
21.7k2842
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152630%2fif-ey-mid-x-abx-show-that-b-frac-mathrmcovx-y-mathrmvarx-w%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49
$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55
$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07