If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ without assuming $(X,Y)$ has bivariate normal distribution? The Next CEO of Stack OverflowProving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$Prove that (X,Y) is bivariate normal if X is normal and Y conditionally on X is normal$P(X>0,Y>0)$ for a bivariate normal distribution with correlation $rho$Symmetric property for bivariate normal distributionBivariate normal distribution questionBivariate distribution with normal conditionsDistribution Theory - bivariate normal distributionQuestion on bivariate normal distributionDo we really need finite variances $mathrmVar(X)$ and $mathrmVar(Y)$ in the definition of covariance $mathrmCov(X,Y)$?Non-normal Bivariate distribution with normal marginsCorrelation coefficient of a bivariate normal distribution

How to count occurrences of text in a file?

Won the lottery - how do I keep the money?

Is it ever safe to open a suspicious html file (e.g. email attachment)?

Is "for causing autism in X" grammatical?

What was the first Unix version to run on a microcomputer?

What is the result of assigning to std::vector<T>::begin()?

What does convergence in distribution "in the Gromov–Hausdorff" sense mean?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Why do variable in an inner function return nan when there is the same variable name at the inner function declared after log

sp_blitzCache results Memory grants

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Are there any limitations on attacking while grappling?

What does "Its cash flow is deeply negative" mean?

Is there a difference between "Fahrstuhl" and "Aufzug"

Do I need to enable Dev Hub in my PROD Org?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

If the heap is zero-initialized for security, then why is the stack merely uninitialized?

Should I tutor a student who I know has cheated on their homework?

Complex fractions

Novel about a guy who is possessed by the divine essence and the world ends?

What is the purpose of the Evocation wizard's Potent Cantrip feature?

What can we do to stop prior company from asking us questions?

What flight has the highest ratio of time difference to flight time?

Can I run my washing machine drain line into a condensate pump so it drains better?



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ without assuming $(X,Y)$ has bivariate normal distribution?



The Next CEO of Stack OverflowProving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$Prove that (X,Y) is bivariate normal if X is normal and Y conditionally on X is normal$P(X>0,Y>0)$ for a bivariate normal distribution with correlation $rho$Symmetric property for bivariate normal distributionBivariate normal distribution questionBivariate distribution with normal conditionsDistribution Theory - bivariate normal distributionQuestion on bivariate normal distributionDo we really need finite variances $mathrmVar(X)$ and $mathrmVar(Y)$ in the definition of covariance $mathrmCov(X,Y)$?Non-normal Bivariate distribution with normal marginsCorrelation coefficient of a bivariate normal distribution










1












$begingroup$



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07















1












$begingroup$



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07













1












1








1


0



$begingroup$



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?










share|cite|improve this question











$endgroup$





If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?







probability-theory probability-distributions conditional-probability






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 18 at 22:02









Jack

27.6k1782203




27.6k1782203










asked Mar 18 at 10:33









Sri Krishna SahooSri Krishna Sahoo

620217




620217







  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07












  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07







1




1




$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49




$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49












$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55




$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55












$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07




$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07










2 Answers
2






active

oldest

votes


















6












$begingroup$

Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:



$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Least squares method. Consider the squared residual that must be minimized:
    $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
    begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
    (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
    begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
    colorgreensum_i=1^n x_iy_i\
    colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
    a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
    fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
    fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
    fracCov(X,Y)Var(X).$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152630%2fif-ey-mid-x-abx-show-that-b-frac-mathrmcovx-y-mathrmvarx-w%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
      so that:



      $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






      share|cite|improve this answer









      $endgroup$

















        6












        $begingroup$

        Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
        so that:



        $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






        share|cite|improve this answer









        $endgroup$















          6












          6








          6





          $begingroup$

          Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
          so that:



          $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






          share|cite|improve this answer









          $endgroup$



          Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
          so that:



          $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 18 at 11:05









          drhabdrhab

          104k545136




          104k545136





















              0












              $begingroup$

              Least squares method. Consider the squared residual that must be minimized:
              $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
              begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
              (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
              begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
              colorgreensum_i=1^n x_iy_i\
              colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
              a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
              fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
              fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
              fracCov(X,Y)Var(X).$$






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Least squares method. Consider the squared residual that must be minimized:
                $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
                begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
                (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
                begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
                colorgreensum_i=1^n x_iy_i\
                colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
                a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
                fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
                fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
                fracCov(X,Y)Var(X).$$






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Least squares method. Consider the squared residual that must be minimized:
                  $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
                  begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
                  (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
                  begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
                  colorgreensum_i=1^n x_iy_i\
                  colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
                  a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
                  fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
                  fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
                  fracCov(X,Y)Var(X).$$






                  share|cite|improve this answer









                  $endgroup$



                  Least squares method. Consider the squared residual that must be minimized:
                  $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
                  begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
                  (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
                  begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
                  colorgreensum_i=1^n x_iy_i\
                  colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
                  a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
                  fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
                  fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
                  fracCov(X,Y)Var(X).$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 18 at 13:04









                  farruhotafarruhota

                  21.7k2842




                  21.7k2842



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152630%2fif-ey-mid-x-abx-show-that-b-frac-mathrmcovx-y-mathrmvarx-w%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                      random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                      Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye