If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ without assuming $(X,Y)$ has bivariate normal distribution? The Next CEO of Stack OverflowProving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$Prove that (X,Y) is bivariate normal if X is normal and Y conditionally on X is normal$P(X>0,Y>0)$ for a bivariate normal distribution with correlation $rho$Symmetric property for bivariate normal distributionBivariate normal distribution questionBivariate distribution with normal conditionsDistribution Theory - bivariate normal distributionQuestion on bivariate normal distributionDo we really need finite variances $mathrmVar(X)$ and $mathrmVar(Y)$ in the definition of covariance $mathrmCov(X,Y)$?Non-normal Bivariate distribution with normal marginsCorrelation coefficient of a bivariate normal distribution

How to count occurrences of text in a file?

Won the lottery - how do I keep the money?

Is it ever safe to open a suspicious html file (e.g. email attachment)?

Is "for causing autism in X" grammatical?

What was the first Unix version to run on a microcomputer?

What is the result of assigning to std::vector<T>::begin()?

What does convergence in distribution "in the Gromov–Hausdorff" sense mean?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Why do variable in an inner function return nan when there is the same variable name at the inner function declared after log

sp_blitzCache results Memory grants

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Are there any limitations on attacking while grappling?

What does "Its cash flow is deeply negative" mean?

Is there a difference between "Fahrstuhl" and "Aufzug"

Do I need to enable Dev Hub in my PROD Org?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

If the heap is zero-initialized for security, then why is the stack merely uninitialized?

Should I tutor a student who I know has cheated on their homework?

Complex fractions

Novel about a guy who is possessed by the divine essence and the world ends?

What is the purpose of the Evocation wizard's Potent Cantrip feature?

What can we do to stop prior company from asking us questions?

What flight has the highest ratio of time difference to flight time?

Can I run my washing machine drain line into a condensate pump so it drains better?



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ without assuming $(X,Y)$ has bivariate normal distribution?



The Next CEO of Stack OverflowProving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$Prove that (X,Y) is bivariate normal if X is normal and Y conditionally on X is normal$P(X>0,Y>0)$ for a bivariate normal distribution with correlation $rho$Symmetric property for bivariate normal distributionBivariate normal distribution questionBivariate distribution with normal conditionsDistribution Theory - bivariate normal distributionQuestion on bivariate normal distributionDo we really need finite variances $mathrmVar(X)$ and $mathrmVar(Y)$ in the definition of covariance $mathrmCov(X,Y)$?Non-normal Bivariate distribution with normal marginsCorrelation coefficient of a bivariate normal distribution










1












$begingroup$



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07















1












$begingroup$



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07













1












1








1


0



$begingroup$



If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?










share|cite|improve this question











$endgroup$





If $E(Ymid X)=a+bX$, show that $b =fracmathrmCov(X,Y)mathrmVar(X)$ where $a$ and $b$ are constants.




This question was asked before:



Proving $a$ (in $Y = aX + b + e$) satisfies $a = Cov(X, Y )/Var(X)$



But can someone suggest an answer without assuming bivariate normal distribution?







probability-theory probability-distributions conditional-probability






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 18 at 22:02









Jack

27.6k1782203




27.6k1782203










asked Mar 18 at 10:33









Sri Krishna SahooSri Krishna Sahoo

620217




620217







  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07












  • 1




    $begingroup$
    It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
    $endgroup$
    – J.G.
    Mar 18 at 10:49










  • $begingroup$
    $X$ and $Y$ should be square integrable, this is missing from the statement
    $endgroup$
    – zhoraster
    Mar 18 at 10:55










  • $begingroup$
    Law of total covariance should do then.
    $endgroup$
    – Mann
    Mar 18 at 11:07







1




1




$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49




$begingroup$
It comes down to justifying $operatornamecov(X,,Y)=operatornamecov(X,,a+bX)$.
$endgroup$
– J.G.
Mar 18 at 10:49












$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55




$begingroup$
$X$ and $Y$ should be square integrable, this is missing from the statement
$endgroup$
– zhoraster
Mar 18 at 10:55












$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07




$begingroup$
Law of total covariance should do then.
$endgroup$
– Mann
Mar 18 at 11:07










2 Answers
2






active

oldest

votes


















6












$begingroup$

Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
so that:



$$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Least squares method. Consider the squared residual that must be minimized:
    $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
    begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
    (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
    begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
    colorgreensum_i=1^n x_iy_i\
    colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
    a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
    fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
    fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
    fracCov(X,Y)Var(X).$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152630%2fif-ey-mid-x-abx-show-that-b-frac-mathrmcovx-y-mathrmvarx-w%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
      so that:



      $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






      share|cite|improve this answer









      $endgroup$

















        6












        $begingroup$

        Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
        so that:



        $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






        share|cite|improve this answer









        $endgroup$















          6












          6








          6





          $begingroup$

          Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
          so that:



          $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$






          share|cite|improve this answer









          $endgroup$



          Observe that: $$mathbbEY=mathbbEleft[mathbbEleft[Ymid Xright]right]=mathbbEleft[a+bXright]=a+bmathbbEX$$
          so that:



          $$mathsfCovleft(X,Yright)=mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)right]=mathbbEleft[mathbbEleft[left(X-mathbbEXright)left(Y-mathbbEYright)mid Xright]right]=$$$$mathbbEleft[left(X-mathbbEXright)mathbbEleft[left(Y-mathbbEYright)mid Xright]right]=mathbbEleft[left(X-mathbbEXright)left(a+bX-mathbbEYright)right]=bmathbbEleft(X-mathbbEXright)^2=bmathsfVarX$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 18 at 11:05









          drhabdrhab

          104k545136




          104k545136





















              0












              $begingroup$

              Least squares method. Consider the squared residual that must be minimized:
              $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
              begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
              (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
              begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
              colorgreensum_i=1^n x_iy_i\
              colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
              a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
              fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
              fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
              fracCov(X,Y)Var(X).$$






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Least squares method. Consider the squared residual that must be minimized:
                $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
                begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
                (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
                begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
                colorgreensum_i=1^n x_iy_i\
                colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
                a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
                fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
                fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
                fracCov(X,Y)Var(X).$$






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Least squares method. Consider the squared residual that must be minimized:
                  $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
                  begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
                  (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
                  begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
                  colorgreensum_i=1^n x_iy_i\
                  colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
                  a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
                  fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
                  fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
                  fracCov(X,Y)Var(X).$$






                  share|cite|improve this answer









                  $endgroup$



                  Least squares method. Consider the squared residual that must be minimized:
                  $$R^2=sum_i=1^n (y_i-ax_i-b)^2;\
                  begincases(R^2)_a=-2sum_i=1^n(y_i-ax_i-b)x_i=0\
                  (R^2)_b=-sum_i=1^n (y_i-ax_i-b)=0 endcases Rightarrow \
                  begincasescolorredsum_i=1^n x_i^2cdot a+colorbluesum_i=1^n x_icdot b=
                  colorgreensum_i=1^n x_iy_i\
                  colorredsum_i=1^n x_icdot a+qquad colorbluencdot b=colorgreensum_i=1^n y_iendcases qquad stackrelCramerRightarrow \
                  a=fracbeginvmatrixcolorgreensum_i=1^n x_iy_i&colorbluesum_i=1^n x_i\ colorgreensum_i=1^n y_i&colorbluenendvmatrixbeginvmatrixcolorredsum_i=1^n x_i^2&colorbluesum_i=1^n x_i\ colorredsum_i=1^n x_i&colorbluenendvmatrix=
                  fracnsum_i=1^n x_iy_i-sum_i=1^n x_icdot sum_i=1^n y_insum_i=1^n x_i^2-(sum_i=1^n x_i)^2=\
                  fracfracsum_i=1^n x_iy_in-fracsum_i=1^n x_incdot fracsum_i=1^n y_infracsum_i=1^n x_i^2n-left(fracsum_i=1^n x_inright)^2=\
                  fracCov(X,Y)Var(X).$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 18 at 13:04









                  farruhotafarruhota

                  21.7k2842




                  21.7k2842



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152630%2fif-ey-mid-x-abx-show-that-b-frac-mathrmcovx-y-mathrmvarx-w%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

                      John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

                      Sum infinite sum for a complex variable not in the integers The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of the infinite product $prod_n = 1^infty fracz - alpha_nz - beta_n$Suppose $sum_k=-infty^inftya_kz^k$ and $sum_-infty^inftyb_kz^k$ converge to $1/sin(pi z)$. Find $b_k-a_k$.Laurent series of $ 1over (z - i) $Laurent series for $z^2 e^1/z$ at $z = infty$Write $sumlimits_n=0^infty e^-xn^3$ in the form $sumlimits_n=-infty^infty a_nx^n$Help needed on laurent series for a complex functionShow that $sum_-infty^infty (-1)^nexp(nz-frac12(n+frac12)^2omega)$ converges and is entireΑn entire function as an infinite sum of entire functionsClassify singularities in the extended complex planeFinding the laurent series around z = 0