How can I know a value of this limit?Limits in integrationEvaluation of a limitCan this limit be solved algebraically?How can i resolve this limit without L'Hopital's Rule?find this limit without l'hopital's ruleHow to find the value of $a$ and $b$ from this limit problem with or without L'Hopital's formula?How to do limit?Find the limit of the sequence $(4^n)/((2n)!)$How to solve this limit involving sine and log?Find a limit, no Taylor formula

Do black holes violate the conservation of mass?

Difference between `nmap local-IP-address` and `nmap localhost`

I can't die. Who am I?

Are E natural minor and B harmonic minor related?

I reported the illegal activity of my boss to his boss. My boss found out. Now I am being punished. What should I do?

Giving a career talk in my old university, how prominently should I tell students my salary?

Leveling the sagging side of the home

ESPP--any reason not to go all in?

Can the Witch Sight warlock invocation see through the Mirror Image spell?

Rationale to prefer local variables over instance variables?

The (Easy) Road to Code

How to educate team mate to take screenshots for bugs with out unwanted stuff

Cycles on the torus

Finding the minimum value of a function without using Calculus

How do I increase the number of TTY consoles?

Called into a meeting and told we are being made redundant (laid off) and "not to share outside". Can I tell my partner?

What can I do if someone tampers with my SSH public key?

What is the purpose of a disclaimer like "this is not legal advice"?

Is it a Cyclops number? "Nobody" knows!

Writing text next to a table

Computation logic of Partway in TikZ

Help! My Character is too much for her story!

Converting from "matrix" data into "coordinate" data

Trocar background-image com delay via jQuery



How can I know a value of this limit?


Limits in integrationEvaluation of a limitCan this limit be solved algebraically?How can i resolve this limit without L'Hopital's Rule?find this limit without l'hopital's ruleHow to find the value of $a$ and $b$ from this limit problem with or without L'Hopital's formula?How to do limit?Find the limit of the sequence $(4^n)/((2n)!)$How to solve this limit involving sine and log?Find a limit, no Taylor formula













1












$begingroup$


$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago















1












$begingroup$


$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago













1












1








1


1



$begingroup$


$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.










share|cite|improve this question











$endgroup$




$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.







real-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago









robjohn

269k27309635




269k27309635










asked yesterday









Andrey KomisarovAndrey Komisarov

353




353







  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago












  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago







2




2




$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday





$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday





1




1




$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday




$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday












$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday




$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday












$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday




$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday




1




1




$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn
5 hours ago




$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn
5 hours ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.



It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    For any $m$,
    $$
    beginalign
    (1-t)sum_n=0^inftyfract^n1+t^n
    &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
    &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
    &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
    endalign
    $$

    Let $tto1^-$,
    $$
    lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
    =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
    $$

    Let $mtoinfty$,
    $$
    beginalign
    lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
    &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
    &=log(2)tag3
    endalign
    $$






    share|cite|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140525%2fhow-can-i-know-a-value-of-this-limit%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
      $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
      where $|E|le f(0)=frac12$.



      It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
      $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
      So the limit we are looking for is
      $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






      share|cite|improve this answer









      $endgroup$

















        5












        $begingroup$

        Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
        $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
        where $|E|le f(0)=frac12$.



        It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
        $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
        So the limit we are looking for is
        $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






        share|cite|improve this answer









        $endgroup$















          5












          5








          5





          $begingroup$

          Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
          $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
          where $|E|le f(0)=frac12$.



          It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
          $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
          So the limit we are looking for is
          $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






          share|cite|improve this answer









          $endgroup$



          Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
          $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
          where $|E|le f(0)=frac12$.



          It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
          $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
          So the limit we are looking for is
          $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 19 hours ago









          Eric YauEric Yau

          48429




          48429





















              3












              $begingroup$

              For any $m$,
              $$
              beginalign
              (1-t)sum_n=0^inftyfract^n1+t^n
              &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
              &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
              &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
              endalign
              $$

              Let $tto1^-$,
              $$
              lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
              =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
              $$

              Let $mtoinfty$,
              $$
              beginalign
              lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
              &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
              &=log(2)tag3
              endalign
              $$






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                For any $m$,
                $$
                beginalign
                (1-t)sum_n=0^inftyfract^n1+t^n
                &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
                &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
                &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
                endalign
                $$

                Let $tto1^-$,
                $$
                lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
                $$

                Let $mtoinfty$,
                $$
                beginalign
                lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
                &=log(2)tag3
                endalign
                $$






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  For any $m$,
                  $$
                  beginalign
                  (1-t)sum_n=0^inftyfract^n1+t^n
                  &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
                  &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
                  &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
                  endalign
                  $$

                  Let $tto1^-$,
                  $$
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
                  $$

                  Let $mtoinfty$,
                  $$
                  beginalign
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
                  &=log(2)tag3
                  endalign
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  For any $m$,
                  $$
                  beginalign
                  (1-t)sum_n=0^inftyfract^n1+t^n
                  &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
                  &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
                  &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
                  endalign
                  $$

                  Let $tto1^-$,
                  $$
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
                  $$

                  Let $mtoinfty$,
                  $$
                  beginalign
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
                  &=log(2)tag3
                  endalign
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 7 hours ago

























                  answered 13 hours ago









                  robjohnrobjohn

                  269k27309635




                  269k27309635



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140525%2fhow-can-i-know-a-value-of-this-limit%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                      Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                      Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers