How can I know a value of this limit?Limits in integrationEvaluation of a limitCan this limit be solved algebraically?How can i resolve this limit without L'Hopital's Rule?find this limit without l'hopital's ruleHow to find the value of $a$ and $b$ from this limit problem with or without L'Hopital's formula?How to do limit?Find the limit of the sequence $(4^n)/((2n)!)$How to solve this limit involving sine and log?Find a limit, no Taylor formula
Do black holes violate the conservation of mass?
Difference between `nmap local-IP-address` and `nmap localhost`
I can't die. Who am I?
Are E natural minor and B harmonic minor related?
I reported the illegal activity of my boss to his boss. My boss found out. Now I am being punished. What should I do?
Giving a career talk in my old university, how prominently should I tell students my salary?
Leveling the sagging side of the home
ESPP--any reason not to go all in?
Can the Witch Sight warlock invocation see through the Mirror Image spell?
Rationale to prefer local variables over instance variables?
The (Easy) Road to Code
How to educate team mate to take screenshots for bugs with out unwanted stuff
Cycles on the torus
Finding the minimum value of a function without using Calculus
How do I increase the number of TTY consoles?
Called into a meeting and told we are being made redundant (laid off) and "not to share outside". Can I tell my partner?
What can I do if someone tampers with my SSH public key?
What is the purpose of a disclaimer like "this is not legal advice"?
Is it a Cyclops number? "Nobody" knows!
Writing text next to a table
Computation logic of Partway in TikZ
Help! My Character is too much for her story!
Converting from "matrix" data into "coordinate" data
Trocar background-image com delay via jQuery
How can I know a value of this limit?
Limits in integrationEvaluation of a limitCan this limit be solved algebraically?How can i resolve this limit without L'Hopital's Rule?find this limit without l'hopital's ruleHow to find the value of $a$ and $b$ from this limit problem with or without L'Hopital's formula?How to do limit?Find the limit of the sequence $(4^n)/((2n)!)$How to solve this limit involving sine and log?Find a limit, no Taylor formula
$begingroup$
$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$
I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.
real-analysis limits
$endgroup$
add a comment |
$begingroup$
$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$
I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.
real-analysis limits
$endgroup$
2
$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday
1
$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday
$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday
$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday
1
$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn♦
5 hours ago
add a comment |
$begingroup$
$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$
I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.
real-analysis limits
$endgroup$
$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$
I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.
real-analysis limits
real-analysis limits
edited 7 hours ago
robjohn♦
269k27309635
269k27309635
asked yesterday
Andrey KomisarovAndrey Komisarov
353
353
2
$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday
1
$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday
$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday
$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday
1
$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn♦
5 hours ago
add a comment |
2
$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday
1
$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday
$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday
$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday
1
$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn♦
5 hours ago
2
2
$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday
$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday
1
1
$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday
$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday
$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday
$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday
$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday
$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday
1
1
$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn♦
5 hours ago
$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn♦
5 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.
It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$
$endgroup$
add a comment |
$begingroup$
For any $m$,
$$
beginalign
(1-t)sum_n=0^inftyfract^n1+t^n
&=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
&+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
&=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
endalign
$$
Let $tto1^-$,
$$
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
=sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
$$
Let $mtoinfty$,
$$
beginalign
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
&=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
&=log(2)tag3
endalign
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140525%2fhow-can-i-know-a-value-of-this-limit%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.
It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$
$endgroup$
add a comment |
$begingroup$
Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.
It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$
$endgroup$
add a comment |
$begingroup$
Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.
It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$
$endgroup$
Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.
It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$
answered 19 hours ago
Eric YauEric Yau
48429
48429
add a comment |
add a comment |
$begingroup$
For any $m$,
$$
beginalign
(1-t)sum_n=0^inftyfract^n1+t^n
&=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
&+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
&=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
endalign
$$
Let $tto1^-$,
$$
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
=sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
$$
Let $mtoinfty$,
$$
beginalign
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
&=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
&=log(2)tag3
endalign
$$
$endgroup$
add a comment |
$begingroup$
For any $m$,
$$
beginalign
(1-t)sum_n=0^inftyfract^n1+t^n
&=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
&+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
&=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
endalign
$$
Let $tto1^-$,
$$
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
=sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
$$
Let $mtoinfty$,
$$
beginalign
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
&=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
&=log(2)tag3
endalign
$$
$endgroup$
add a comment |
$begingroup$
For any $m$,
$$
beginalign
(1-t)sum_n=0^inftyfract^n1+t^n
&=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
&+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
&=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
endalign
$$
Let $tto1^-$,
$$
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
=sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
$$
Let $mtoinfty$,
$$
beginalign
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
&=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
&=log(2)tag3
endalign
$$
$endgroup$
For any $m$,
$$
beginalign
(1-t)sum_n=0^inftyfract^n1+t^n
&=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
&+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
&=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
endalign
$$
Let $tto1^-$,
$$
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
=sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
$$
Let $mtoinfty$,
$$
beginalign
lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
&=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
&=log(2)tag3
endalign
$$
edited 7 hours ago
answered 13 hours ago
robjohn♦robjohn
269k27309635
269k27309635
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140525%2fhow-can-i-know-a-value-of-this-limit%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday
1
$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday
$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday
$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday
1
$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn♦
5 hours ago