How can I know a value of this limit?Limits in integrationEvaluation of a limitCan this limit be solved algebraically?How can i resolve this limit without L'Hopital's Rule?find this limit without l'hopital's ruleHow to find the value of $a$ and $b$ from this limit problem with or without L'Hopital's formula?How to do limit?Find the limit of the sequence $(4^n)/((2n)!)$How to solve this limit involving sine and log?Find a limit, no Taylor formula

Do black holes violate the conservation of mass?

Difference between `nmap local-IP-address` and `nmap localhost`

I can't die. Who am I?

Are E natural minor and B harmonic minor related?

I reported the illegal activity of my boss to his boss. My boss found out. Now I am being punished. What should I do?

Giving a career talk in my old university, how prominently should I tell students my salary?

Leveling the sagging side of the home

ESPP--any reason not to go all in?

Can the Witch Sight warlock invocation see through the Mirror Image spell?

Rationale to prefer local variables over instance variables?

The (Easy) Road to Code

How to educate team mate to take screenshots for bugs with out unwanted stuff

Cycles on the torus

Finding the minimum value of a function without using Calculus

How do I increase the number of TTY consoles?

Called into a meeting and told we are being made redundant (laid off) and "not to share outside". Can I tell my partner?

What can I do if someone tampers with my SSH public key?

What is the purpose of a disclaimer like "this is not legal advice"?

Is it a Cyclops number? "Nobody" knows!

Writing text next to a table

Computation logic of Partway in TikZ

Help! My Character is too much for her story!

Converting from "matrix" data into "coordinate" data

Trocar background-image com delay via jQuery



How can I know a value of this limit?


Limits in integrationEvaluation of a limitCan this limit be solved algebraically?How can i resolve this limit without L'Hopital's Rule?find this limit without l'hopital's ruleHow to find the value of $a$ and $b$ from this limit problem with or without L'Hopital's formula?How to do limit?Find the limit of the sequence $(4^n)/((2n)!)$How to solve this limit involving sine and log?Find a limit, no Taylor formula













1












$begingroup$


$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago















1












$begingroup$


$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago













1












1








1


1



$begingroup$


$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.










share|cite|improve this question











$endgroup$




$$
lim_tto 1^- (1-t) sum_n=0^infty fract^n1+t^n
$$



I try to use L'hopital's rule but not successfully. Also I know that exist formula Sonine but I can't understand how I can use it.







real-analysis limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago









robjohn

269k27309635




269k27309635










asked yesterday









Andrey KomisarovAndrey Komisarov

353




353







  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago












  • 2




    $begingroup$
    is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
    $endgroup$
    – cand
    yesterday







  • 1




    $begingroup$
    also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
    $endgroup$
    – cand
    yesterday










  • $begingroup$
    took closest interpretation, please check
    $endgroup$
    – gt6989b
    yesterday










  • $begingroup$
    it is lim t→1−0
    $endgroup$
    – Andrey Komisarov
    yesterday






  • 1




    $begingroup$
    @cand: the sum diverges for $tgt1$.
    $endgroup$
    – robjohn
    5 hours ago







2




2




$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday





$begingroup$
is it $lim_tto 1^-$ on the limit or simply $lim_tto 1$?
$endgroup$
– cand
yesterday





1




1




$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday




$begingroup$
also try reading meta.math.stackexchange.com/questions/5020/… to learn how mathjax work so peoples can understand you equation part better.
$endgroup$
– cand
yesterday












$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday




$begingroup$
took closest interpretation, please check
$endgroup$
– gt6989b
yesterday












$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday




$begingroup$
it is lim t→1−0
$endgroup$
– Andrey Komisarov
yesterday




1




1




$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn
5 hours ago




$begingroup$
@cand: the sum diverges for $tgt1$.
$endgroup$
– robjohn
5 hours ago










2 Answers
2






active

oldest

votes


















5












$begingroup$

Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
$$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
where $|E|le f(0)=frac12$.



It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
$$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
So the limit we are looking for is
$$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    For any $m$,
    $$
    beginalign
    (1-t)sum_n=0^inftyfract^n1+t^n
    &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
    &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
    &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
    endalign
    $$

    Let $tto1^-$,
    $$
    lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
    =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
    $$

    Let $mtoinfty$,
    $$
    beginalign
    lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
    &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
    &=log(2)tag3
    endalign
    $$






    share|cite|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140525%2fhow-can-i-know-a-value-of-this-limit%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
      $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
      where $|E|le f(0)=frac12$.



      It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
      $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
      So the limit we are looking for is
      $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






      share|cite|improve this answer









      $endgroup$

















        5












        $begingroup$

        Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
        $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
        where $|E|le f(0)=frac12$.



        It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
        $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
        So the limit we are looking for is
        $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






        share|cite|improve this answer









        $endgroup$















          5












          5








          5





          $begingroup$

          Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
          $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
          where $|E|le f(0)=frac12$.



          It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
          $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
          So the limit we are looking for is
          $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$






          share|cite|improve this answer









          $endgroup$



          Fix $tin(0,1)$. Let $f(x)=fract^x1+t^x$. Using area principle, we have that
          $$sum_n=0^infty f(n)=int_0^infty f(x) dx+E,$$
          where $|E|le f(0)=frac12$.



          It remains to estimate the integral. Let $y=t^x$. Then the integral can be rewritten as
          $$int_0^infty f(x) dx=int_0^infty fract^x1+t^x dx=frac-1log tint_0^1fracdy1+y=frac-log2log t.$$
          So the limit we are looking for is
          $$lim_trightarrow1^-(1-t)sum_n=0^infty f(n)=lim_trightarrow1^-fract-1log tlog2=log2.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 19 hours ago









          Eric YauEric Yau

          48429




          48429





















              3












              $begingroup$

              For any $m$,
              $$
              beginalign
              (1-t)sum_n=0^inftyfract^n1+t^n
              &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
              &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
              &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
              endalign
              $$

              Let $tto1^-$,
              $$
              lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
              =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
              $$

              Let $mtoinfty$,
              $$
              beginalign
              lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
              &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
              &=log(2)tag3
              endalign
              $$






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                For any $m$,
                $$
                beginalign
                (1-t)sum_n=0^inftyfract^n1+t^n
                &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
                &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
                &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
                endalign
                $$

                Let $tto1^-$,
                $$
                lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
                $$

                Let $mtoinfty$,
                $$
                beginalign
                lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
                &=log(2)tag3
                endalign
                $$






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  For any $m$,
                  $$
                  beginalign
                  (1-t)sum_n=0^inftyfract^n1+t^n
                  &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
                  &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
                  &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
                  endalign
                  $$

                  Let $tto1^-$,
                  $$
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
                  $$

                  Let $mtoinfty$,
                  $$
                  beginalign
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
                  &=log(2)tag3
                  endalign
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  For any $m$,
                  $$
                  beginalign
                  (1-t)sum_n=0^inftyfract^n1+t^n
                  &=(1-t)sum_n=0^inftysum_k=1^m-1(-1)^k-1t^kn\
                  &+(-1)^m-1(1-t)sum_n=0^inftyfract^mn1+t^n\
                  &=sum_k=1^m-1(-1)^k-1frac1-t1-t^k+O!left(frac1-t1-t^mright)tag1
                  endalign
                  $$

                  Let $tto1^-$,
                  $$
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  =sum_k=1^m-1frac(-1)^k-1k+O!left(frac1mright)tag2
                  $$

                  Let $mtoinfty$,
                  $$
                  beginalign
                  lim_tto1^-(1-t)sum_n=0^inftyfract^n1+t^n
                  &=sum_k=1^inftyfrac(-1)^k-1k\[6pt]
                  &=log(2)tag3
                  endalign
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 7 hours ago

























                  answered 13 hours ago









                  robjohnrobjohn

                  269k27309635




                  269k27309635



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140525%2fhow-can-i-know-a-value-of-this-limit%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                      random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                      Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye