A binomial double sumSumming a binomial seriesSum of squares of binomial coefficientsFinding the sum of a conditionally convergent double seriesDouble sum and zeta functionEvaluting sum $sum limits_n=0^inftyfracn^kn!$Does this summation (involving binomial) have a closed form? If so, what is it?Finding a closed form for $sum_k=1^infty(-1)^n-1fraczeta(2n+1)2^2n+1$Seeking general formula for Euler Sum $sumlimits _ n=1 ^ infty frac left(H_nright)^pn^q$ with $q$ even and $p$ oddHelp with a nasty sum of binomial coefficientsA Ramanujan sum

How to write a chaotic neutral protagonist and prevent my readers from thinking they are evil?

What does the Digital Threat scope actually do?

Is this Paypal Github SDK reference really a dangerous site?

What will happen if my luggage gets delayed?

Use Mercury as quenching liquid for swords?

ESPP--any reason not to go all in?

Trocar background-image com delay via jQuery

Numerical value of Determinant far from what it is supposed to be

Would those living in a "perfect society" not understand satire

cannot log in to the server after changing SSH port

Having the player face themselves after the mid-game

Did Amazon pay $0 in taxes last year?

Writing text next to a table

Why is it common in European airports not to display the gate for flights until around 45-90 minutes before departure, unlike other places?

What is this tube in a jet engine's air intake?

Create chunks from an array

How do spaceships determine each other's mass in space?

Professor forcing me to attend a conference, I can't afford even with 50% funding

Are small insurances worth it?

What is the purpose of a disclaimer like "this is not legal advice"?

Giving a career talk in my old university, how prominently should I tell students my salary?

Leveling the sagging side of the home

Smooth vector fields on a surface modulo diffeomorphisms

Is it a Cyclops number? "Nobody" knows!



A binomial double sum


Summing a binomial seriesSum of squares of binomial coefficientsFinding the sum of a conditionally convergent double seriesDouble sum and zeta functionEvaluting sum $sum limits_n=0^inftyfracn^kn!$Does this summation (involving binomial) have a closed form? If so, what is it?Finding a closed form for $sum_k=1^infty(-1)^n-1fraczeta(2n+1)2^2n+1$Seeking general formula for Euler Sum $sumlimits _ n=1 ^ infty frac left(H_nright)^pn^q$ with $q$ even and $p$ oddHelp with a nasty sum of binomial coefficientsA Ramanujan sum













1












$begingroup$


I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday















1












$begingroup$


I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday













1












1








1


3



$begingroup$


I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?










share|cite|improve this question











$endgroup$




I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 5 at 13:35







Frank S

















asked Mar 5 at 12:59









Frank SFrank S

637




637











  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday
















  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday















$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday




$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday










1 Answer
1






active

oldest

votes


















0












$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136181%2fa-binomial-double-sum%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16















0












$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16













0












0








0





$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$



We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered Mar 5 at 16:06









G CabG Cab

19.9k31340




19.9k31340











  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16
















  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16















$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22





$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22













$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16




$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136181%2fa-binomial-double-sum%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers