A binomial double sumSumming a binomial seriesSum of squares of binomial coefficientsFinding the sum of a conditionally convergent double seriesDouble sum and zeta functionEvaluting sum $sum limits_n=0^inftyfracn^kn!$Does this summation (involving binomial) have a closed form? If so, what is it?Finding a closed form for $sum_k=1^infty(-1)^n-1fraczeta(2n+1)2^2n+1$Seeking general formula for Euler Sum $sumlimits _ n=1 ^ infty frac left(H_nright)^pn^q$ with $q$ even and $p$ oddHelp with a nasty sum of binomial coefficientsA Ramanujan sum

How to write a chaotic neutral protagonist and prevent my readers from thinking they are evil?

What does the Digital Threat scope actually do?

Is this Paypal Github SDK reference really a dangerous site?

What will happen if my luggage gets delayed?

Use Mercury as quenching liquid for swords?

ESPP--any reason not to go all in?

Trocar background-image com delay via jQuery

Numerical value of Determinant far from what it is supposed to be

Would those living in a "perfect society" not understand satire

cannot log in to the server after changing SSH port

Having the player face themselves after the mid-game

Did Amazon pay $0 in taxes last year?

Writing text next to a table

Why is it common in European airports not to display the gate for flights until around 45-90 minutes before departure, unlike other places?

What is this tube in a jet engine's air intake?

Create chunks from an array

How do spaceships determine each other's mass in space?

Professor forcing me to attend a conference, I can't afford even with 50% funding

Are small insurances worth it?

What is the purpose of a disclaimer like "this is not legal advice"?

Giving a career talk in my old university, how prominently should I tell students my salary?

Leveling the sagging side of the home

Smooth vector fields on a surface modulo diffeomorphisms

Is it a Cyclops number? "Nobody" knows!



A binomial double sum


Summing a binomial seriesSum of squares of binomial coefficientsFinding the sum of a conditionally convergent double seriesDouble sum and zeta functionEvaluting sum $sum limits_n=0^inftyfracn^kn!$Does this summation (involving binomial) have a closed form? If so, what is it?Finding a closed form for $sum_k=1^infty(-1)^n-1fraczeta(2n+1)2^2n+1$Seeking general formula for Euler Sum $sumlimits _ n=1 ^ infty frac left(H_nright)^pn^q$ with $q$ even and $p$ oddHelp with a nasty sum of binomial coefficientsA Ramanujan sum













1












$begingroup$


I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday















1












$begingroup$


I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday













1












1








1


3



$begingroup$


I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?










share|cite|improve this question











$endgroup$




I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 5 at 13:35







Frank S

















asked Mar 5 at 12:59









Frank SFrank S

637




637











  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday
















  • $begingroup$
    What have you tried?
    $endgroup$
    – clathratus
    yesterday















$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday




$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday










1 Answer
1






active

oldest

votes


















0












$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136181%2fa-binomial-double-sum%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16















0












$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16













0












0








0





$begingroup$

We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.






share|cite|improve this answer











$endgroup$



We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$



Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$



Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered Mar 5 at 16:06









G CabG Cab

19.9k31340




19.9k31340











  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16
















  • $begingroup$
    Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
    $endgroup$
    – Robert Z
    Mar 5 at 16:22











  • $begingroup$
    @RobertZ: ehps, probably I made some error: will verify, thanks for signalling
    $endgroup$
    – G Cab
    Mar 5 at 17:16















$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22





$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22













$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16




$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136181%2fa-binomial-double-sum%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".