A binomial double sumSumming a binomial seriesSum of squares of binomial coefficientsFinding the sum of a conditionally convergent double seriesDouble sum and zeta functionEvaluting sum $sum limits_n=0^inftyfracn^kn!$Does this summation (involving binomial) have a closed form? If so, what is it?Finding a closed form for $sum_k=1^infty(-1)^n-1fraczeta(2n+1)2^2n+1$Seeking general formula for Euler Sum $sumlimits _ n=1 ^ infty frac left(H_nright)^pn^q$ with $q$ even and $p$ oddHelp with a nasty sum of binomial coefficientsA Ramanujan sum
How to write a chaotic neutral protagonist and prevent my readers from thinking they are evil?
What does the Digital Threat scope actually do?
Is this Paypal Github SDK reference really a dangerous site?
What will happen if my luggage gets delayed?
Use Mercury as quenching liquid for swords?
ESPP--any reason not to go all in?
Trocar background-image com delay via jQuery
Numerical value of Determinant far from what it is supposed to be
Would those living in a "perfect society" not understand satire
cannot log in to the server after changing SSH port
Having the player face themselves after the mid-game
Did Amazon pay $0 in taxes last year?
Writing text next to a table
Why is it common in European airports not to display the gate for flights until around 45-90 minutes before departure, unlike other places?
What is this tube in a jet engine's air intake?
Create chunks from an array
How do spaceships determine each other's mass in space?
Professor forcing me to attend a conference, I can't afford even with 50% funding
Are small insurances worth it?
What is the purpose of a disclaimer like "this is not legal advice"?
Giving a career talk in my old university, how prominently should I tell students my salary?
Leveling the sagging side of the home
Smooth vector fields on a surface modulo diffeomorphisms
Is it a Cyclops number? "Nobody" knows!
A binomial double sum
Summing a binomial seriesSum of squares of binomial coefficientsFinding the sum of a conditionally convergent double seriesDouble sum and zeta functionEvaluting sum $sum limits_n=0^inftyfracn^kn!$Does this summation (involving binomial) have a closed form? If so, what is it?Finding a closed form for $sum_k=1^infty(-1)^n-1fraczeta(2n+1)2^2n+1$Seeking general formula for Euler Sum $sumlimits _ n=1 ^ infty frac left(H_nright)^pn^q$ with $q$ even and $p$ oddHelp with a nasty sum of binomial coefficientsA Ramanujan sum
$begingroup$
I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?
sequences-and-series
$endgroup$
$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday
add a comment |
$begingroup$
I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?
sequences-and-series
$endgroup$
I was doing some numerical experiment and I found that
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n+1)=sum_k=2^inftyfrac1(k-1)k^2=2-zeta(2).$$
I wonder if the following variation
$$sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)$$
has a closed form. Is it related to $zeta(2)$ or $zeta(3)$?
sequences-and-series
sequences-and-series
edited Mar 5 at 13:35
Frank S
asked Mar 5 at 12:59
Frank SFrank S
637
637
$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday
add a comment |
$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday
$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday
$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$
Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$
Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.
$endgroup$
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136181%2fa-binomial-double-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$
Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$
Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.
$endgroup$
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
add a comment |
$begingroup$
We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$
Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$
Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.
$endgroup$
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
add a comment |
$begingroup$
We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$
Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$
Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.
$endgroup$
We have that the inner sum equals
$$
eqalign
& sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_0, le ,n 1 over binomn+kkleft( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + k right)^,underline ,k, left( n + k - 1 right) = cr
& = k!sumlimits_0, le ,n 1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) cr
$$
Therefore
$$
eqalign
& S = sumlimits_2, le ,k 1 over kleft( k - 1 right)sumlimits_k, le ,n 1 over binomnkleft( n - 1 right) = cr
& = sumlimits_2, le ,k k! over kleft( k - 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k, left( n + k - 1 right) = cr
& = sumlimits_0, le ,k left( k + 2 right)! over left( k + 2 right)left( k + 1 right)sumlimits_0, le ,n
1 over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k! over left( n + 1 right)^,overline ,k + 2, left( n + 1 + k right) = cr
& = sumlimits_0, le ,n sumlimits_0, le ,k k!,left( n + 1 right)^,overline ,k,
over left( n + 1 right)^,overline ,k + 2, left( n + 1 right)^,overline ,k + 1, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)sumlimits_0, le ,k
1^,overline ,k, ,left( n + 1 right)^,overline ,k, over left( n + 3 right)^,overline ,k, left( n + 2 right)^,overline ,k, = cr
& = sumlimits_0, le ,n 1 over left( n + 1 right)^,2 left( n + 2 right)
_3F_,2left( left. matrix 1,;1,n + 1 cr n + 3,n + 2 cr ; right right) cr
$$
Unfortunately, the Hypergeometric does not look to be
of a type expressible in a simpler way.
edited yesterday
answered Mar 5 at 16:06
G CabG Cab
19.9k31340
19.9k31340
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
add a comment |
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
Are you saying that the given series is divergent? Note that $sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk(n-1)leq sum_k=2^inftyfrac1k(k-1)sum_n=k^inftyfrac1binomnk=sum_k=2^inftyfrac1(k-1)^2=zeta(2)$.
$endgroup$
– Robert Z
Mar 5 at 16:22
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
$begingroup$
@RobertZ: ehps, probably I made some error: will verify, thanks for signalling
$endgroup$
– G Cab
Mar 5 at 17:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136181%2fa-binomial-double-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What have you tried?
$endgroup$
– clathratus
yesterday