Distance between incentre and orthocentre.area of a triangle formulaProve that the triangles $ABC$ and $AB^'C^'$ have the same incentre.Olympiad Trigonometric InequalityBrocard Angles proof by Sine and cosine formulae.Coordinates of orthocentre,circumcentre and incentre of a triangle formed in 3d planeProve $r^2+r_1^2+r_2^2+r_3^2=16R^2-a^2-b^2-c^2$ for a triangle with sides $a$, $b$, $c$, circumradius $R$, inradius $r$, exradii $r_1$, $r_2$, $r_3$A question on an isosceles obtuse angled triangle.What is the angle between the median and the bisector?Sides of a triangle given perimeter and two anglesDistance between incentre and excentre of a triangle
What does the Digital Threat scope actually do?
Professor forcing me to attend a conference, I can't afford even with 50% funding
What is better: yes / no radio, or simple checkbox?
Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?
Count each bit-position separately over many 64-bit bitmasks, with AVX but not AVX2
The (Easy) Road to Code
How to copy the rest of lines of a file to another file
Can the Witch Sight warlock invocation see through the Mirror Image spell?
How exactly does an Ethernet collision happen in the cable, since nodes use different circuits for Tx and Rx?
Idiom for feeling after taking risk and someone else being rewarded
Trocar background-image com delay via jQuery
Does the US political system, in principle, allow for a no-party system?
How can a demon take control of a human body during REM sleep?
Is divide-by-zero a security vulnerability?
How do I increase the number of TTY consoles?
I can't die. Who am I?
Are all players supposed to be able to see each others' character sheets?
"If + would" conditional in present perfect tense
When an outsider describes family relationships, which point of view are they using?
Why restrict private health insurance?
What does *dead* mean in *What do you mean, dead?*?
If nine coins are tossed, what is the probability that the number of heads is even?
Is there stress on two letters on the word стоят
Converting from "matrix" data into "coordinate" data
Distance between incentre and orthocentre.
area of a triangle formulaProve that the triangles $ABC$ and $AB^'C^'$ have the same incentre.Olympiad Trigonometric InequalityBrocard Angles proof by Sine and cosine formulae.Coordinates of orthocentre,circumcentre and incentre of a triangle formed in 3d planeProve $r^2+r_1^2+r_2^2+r_3^2=16R^2-a^2-b^2-c^2$ for a triangle with sides $a$, $b$, $c$, circumradius $R$, inradius $r$, exradii $r_1$, $r_2$, $r_3$A question on an isosceles obtuse angled triangle.What is the angle between the median and the bisector?Sides of a triangle given perimeter and two anglesDistance between incentre and excentre of a triangle
$begingroup$
I want to prove that the distance between incentre and orthocentre is $$sqrt2r^2-4R^2cos Acos Bcos C $$here $r$ is inradius and $R$ is circumradius.
I considered $triangle API$ ($P$ is orthocentre and $I$ is incentre). I could find $AP=2Rcos A$, $AI=4RsinfracB2sinfracC2 $ and $angle PAI=angle fracB-C2$.
So applying cosine rule I got $$PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
How to proceed form here ?
geometry trigonometry euclidean-geometry triangle
$endgroup$
add a comment |
$begingroup$
I want to prove that the distance between incentre and orthocentre is $$sqrt2r^2-4R^2cos Acos Bcos C $$here $r$ is inradius and $R$ is circumradius.
I considered $triangle API$ ($P$ is orthocentre and $I$ is incentre). I could find $AP=2Rcos A$, $AI=4RsinfracB2sinfracC2 $ and $angle PAI=angle fracB-C2$.
So applying cosine rule I got $$PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
How to proceed form here ?
geometry trigonometry euclidean-geometry triangle
$endgroup$
add a comment |
$begingroup$
I want to prove that the distance between incentre and orthocentre is $$sqrt2r^2-4R^2cos Acos Bcos C $$here $r$ is inradius and $R$ is circumradius.
I considered $triangle API$ ($P$ is orthocentre and $I$ is incentre). I could find $AP=2Rcos A$, $AI=4RsinfracB2sinfracC2 $ and $angle PAI=angle fracB-C2$.
So applying cosine rule I got $$PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
How to proceed form here ?
geometry trigonometry euclidean-geometry triangle
$endgroup$
I want to prove that the distance between incentre and orthocentre is $$sqrt2r^2-4R^2cos Acos Bcos C $$here $r$ is inradius and $R$ is circumradius.
I considered $triangle API$ ($P$ is orthocentre and $I$ is incentre). I could find $AP=2Rcos A$, $AI=4RsinfracB2sinfracC2 $ and $angle PAI=angle fracB-C2$.
So applying cosine rule I got $$PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
How to proceed form here ?
geometry trigonometry euclidean-geometry triangle
geometry trigonometry euclidean-geometry triangle
edited May 2 '16 at 5:09
Michael Hardy
1
1
asked May 2 '16 at 5:07
mathemathermathemather
864622
864622
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
So applying cosine rule I got $$small PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
I think that you have a typo (the red part) :
$$beginalign&small PI^2=4R^2colorredcos^2A+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2 -4cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)right)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2-cos Acdot colorgreen2sinfracB2cosfracB2cdot 2sinfracC2cosfracC2-4cos Asin^2fracB2sin^2fracC2right)\&small=4R^2left(cos^2A+8sin^2fracB2sin^2fracC2cdot colorbluefrac 12left(1-cos Aright)-cos Acolorgreensin Bsin Cright)\&small=4R^2left(cos^2A+8colorbluesin^2frac A2sin^2fracB2sin^2fracC2-cos Asin Bsin Cright)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos A-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos(180^circ-(B+C))-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2-cos Acos Bcos Cright)\&small =2left(4Rsin frac A2sin frac B2sinfrac C2right)^2-4R^2cos Acos Bcos C\&small=2r^2-4R^2cos Acos Bcos Cendalign$$
$endgroup$
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
add a comment |
$begingroup$
Use these facts
1. The Euler circle is tangent to the inscribed circle
2. The distance between the circumcenter and the incenter using the Euler formula.
3. The formula for the power of a point with respect to a circle
4. The properties of the Euler line
5. The fact that the reflection of the orthocenter with respect to any side of a triangle is on the circumcircle
6. the relationship between the median, the two adjacent sides to that median and the third side.
Then just do the algebra
Let O be the circumcenter (X(3), H the orthocenter (X(4)),I the incenter (X(1)), and W The center of the Euler circle (X(5)), and A' the foot of the altitude on the corresponding side. Assuming a triangle ABC
We have OI^2 =R^2 -2Rr where R is the circumradius and r the inscribed circle radius(
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1767751%2fdistance-between-incentre-and-orthocentre%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
So applying cosine rule I got $$small PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
I think that you have a typo (the red part) :
$$beginalign&small PI^2=4R^2colorredcos^2A+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2 -4cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)right)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2-cos Acdot colorgreen2sinfracB2cosfracB2cdot 2sinfracC2cosfracC2-4cos Asin^2fracB2sin^2fracC2right)\&small=4R^2left(cos^2A+8sin^2fracB2sin^2fracC2cdot colorbluefrac 12left(1-cos Aright)-cos Acolorgreensin Bsin Cright)\&small=4R^2left(cos^2A+8colorbluesin^2frac A2sin^2fracB2sin^2fracC2-cos Asin Bsin Cright)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos A-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos(180^circ-(B+C))-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2-cos Acos Bcos Cright)\&small =2left(4Rsin frac A2sin frac B2sinfrac C2right)^2-4R^2cos Acos Bcos C\&small=2r^2-4R^2cos Acos Bcos Cendalign$$
$endgroup$
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
add a comment |
$begingroup$
So applying cosine rule I got $$small PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
I think that you have a typo (the red part) :
$$beginalign&small PI^2=4R^2colorredcos^2A+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2 -4cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)right)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2-cos Acdot colorgreen2sinfracB2cosfracB2cdot 2sinfracC2cosfracC2-4cos Asin^2fracB2sin^2fracC2right)\&small=4R^2left(cos^2A+8sin^2fracB2sin^2fracC2cdot colorbluefrac 12left(1-cos Aright)-cos Acolorgreensin Bsin Cright)\&small=4R^2left(cos^2A+8colorbluesin^2frac A2sin^2fracB2sin^2fracC2-cos Asin Bsin Cright)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos A-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos(180^circ-(B+C))-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2-cos Acos Bcos Cright)\&small =2left(4Rsin frac A2sin frac B2sinfrac C2right)^2-4R^2cos Acos Bcos C\&small=2r^2-4R^2cos Acos Bcos Cendalign$$
$endgroup$
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
add a comment |
$begingroup$
So applying cosine rule I got $$small PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
I think that you have a typo (the red part) :
$$beginalign&small PI^2=4R^2colorredcos^2A+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2 -4cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)right)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2-cos Acdot colorgreen2sinfracB2cosfracB2cdot 2sinfracC2cosfracC2-4cos Asin^2fracB2sin^2fracC2right)\&small=4R^2left(cos^2A+8sin^2fracB2sin^2fracC2cdot colorbluefrac 12left(1-cos Aright)-cos Acolorgreensin Bsin Cright)\&small=4R^2left(cos^2A+8colorbluesin^2frac A2sin^2fracB2sin^2fracC2-cos Asin Bsin Cright)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos A-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos(180^circ-(B+C))-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2-cos Acos Bcos Cright)\&small =2left(4Rsin frac A2sin frac B2sinfrac C2right)^2-4R^2cos Acos Bcos C\&small=2r^2-4R^2cos Acos Bcos Cendalign$$
$endgroup$
So applying cosine rule I got $$small PI^2=4R^2+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)$$
I think that you have a typo (the red part) :
$$beginalign&small PI^2=4R^2colorredcos^2A+16R^2sin^2fracB2sin^2fracC2 -16R^2cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2 -4cos AsinfracB2sinfracC2Bigg(cosfracB2cosfracC2+sinfracB2sinfracC2Bigg)right)\&small=4R^2left(cos^2A+4sin^2fracB2sin^2fracC2-cos Acdot colorgreen2sinfracB2cosfracB2cdot 2sinfracC2cosfracC2-4cos Asin^2fracB2sin^2fracC2right)\&small=4R^2left(cos^2A+8sin^2fracB2sin^2fracC2cdot colorbluefrac 12left(1-cos Aright)-cos Acolorgreensin Bsin Cright)\&small=4R^2left(cos^2A+8colorbluesin^2frac A2sin^2fracB2sin^2fracC2-cos Asin Bsin Cright)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos A-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2+cos A(cos(180^circ-(B+C))-sin Bsin C)right)\&small=4R^2left(8sin^2frac A2sin^2fracB2sin^2fracC2-cos Acos Bcos Cright)\&small =2left(4Rsin frac A2sin frac B2sinfrac C2right)^2-4R^2cos Acos Bcos C\&small=2r^2-4R^2cos Acos Bcos Cendalign$$
answered May 2 '16 at 6:38
mathlovemathlove
91.8k882218
91.8k882218
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
add a comment |
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
Thank you. The use of different colours really made it easy for me to understand.
$endgroup$
– mathemather
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
$begingroup$
@arutoregni: You are welcome.
$endgroup$
– mathlove
May 2 '16 at 8:15
add a comment |
$begingroup$
Use these facts
1. The Euler circle is tangent to the inscribed circle
2. The distance between the circumcenter and the incenter using the Euler formula.
3. The formula for the power of a point with respect to a circle
4. The properties of the Euler line
5. The fact that the reflection of the orthocenter with respect to any side of a triangle is on the circumcircle
6. the relationship between the median, the two adjacent sides to that median and the third side.
Then just do the algebra
Let O be the circumcenter (X(3), H the orthocenter (X(4)),I the incenter (X(1)), and W The center of the Euler circle (X(5)), and A' the foot of the altitude on the corresponding side. Assuming a triangle ABC
We have OI^2 =R^2 -2Rr where R is the circumradius and r the inscribed circle radius(
New contributor
$endgroup$
add a comment |
$begingroup$
Use these facts
1. The Euler circle is tangent to the inscribed circle
2. The distance between the circumcenter and the incenter using the Euler formula.
3. The formula for the power of a point with respect to a circle
4. The properties of the Euler line
5. The fact that the reflection of the orthocenter with respect to any side of a triangle is on the circumcircle
6. the relationship between the median, the two adjacent sides to that median and the third side.
Then just do the algebra
Let O be the circumcenter (X(3), H the orthocenter (X(4)),I the incenter (X(1)), and W The center of the Euler circle (X(5)), and A' the foot of the altitude on the corresponding side. Assuming a triangle ABC
We have OI^2 =R^2 -2Rr where R is the circumradius and r the inscribed circle radius(
New contributor
$endgroup$
add a comment |
$begingroup$
Use these facts
1. The Euler circle is tangent to the inscribed circle
2. The distance between the circumcenter and the incenter using the Euler formula.
3. The formula for the power of a point with respect to a circle
4. The properties of the Euler line
5. The fact that the reflection of the orthocenter with respect to any side of a triangle is on the circumcircle
6. the relationship between the median, the two adjacent sides to that median and the third side.
Then just do the algebra
Let O be the circumcenter (X(3), H the orthocenter (X(4)),I the incenter (X(1)), and W The center of the Euler circle (X(5)), and A' the foot of the altitude on the corresponding side. Assuming a triangle ABC
We have OI^2 =R^2 -2Rr where R is the circumradius and r the inscribed circle radius(
New contributor
$endgroup$
Use these facts
1. The Euler circle is tangent to the inscribed circle
2. The distance between the circumcenter and the incenter using the Euler formula.
3. The formula for the power of a point with respect to a circle
4. The properties of the Euler line
5. The fact that the reflection of the orthocenter with respect to any side of a triangle is on the circumcircle
6. the relationship between the median, the two adjacent sides to that median and the third side.
Then just do the algebra
Let O be the circumcenter (X(3), H the orthocenter (X(4)),I the incenter (X(1)), and W The center of the Euler circle (X(5)), and A' the foot of the altitude on the corresponding side. Assuming a triangle ABC
We have OI^2 =R^2 -2Rr where R is the circumradius and r the inscribed circle radius(
New contributor
New contributor
answered yesterday
claudeclaude
1
1
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1767751%2fdistance-between-incentre-and-orthocentre%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown