A tough series related with a hypergeometric function with quarter integer parametersClosed-form of $int_0^1 fracln^2(x)sqrtx(a-bx),dx$Definite integral of arcsine over square-root of quadraticHow to prove closed form for a binomial sum?Identities related to hypergeometric functionsAbout a sequence related with the complete elliptic integral of the second kindSimplifying real part of hypergeometric function with complex parametersHypergeometric sum with two binomial factors both in the numerator and in the denominator.An elementary proof of $int_0^1fracarctan xsqrtx(1-x^2),dx = frac132sqrt2pi,Gammaleft(tfrac14right)^2$Looking for a closed form for a $_4 F_3left(ldots,1right)$Generating function of the sequence $binom2nn^3H_n$Infinite series with harmonic numbers related to elliptic integralsAbout the integral $int_0^1fracarctan(x),dxsqrtx(1-x^2)$ and related hypergeometric functionsAn integral inequality related with Hypergeometric function

Can't make sense of a paragraph from Lovecraft

Gomel chasadim tovim - are there bad chasadim?

Is there a way to make cleveref distinguish two environments with the same counter?

Are these two graphs isomorphic? Why/Why not?

Idiom for feeling after taking risk and someone else being rewarded

What would be the most expensive material to an intergalactic society?

Should we avoid writing fiction about historical events without extensive research?

What do you call someone who likes to pick fights?

How do you make a gun that shoots melee weapons and/or swords?

I am the person who abides by rules, but breaks the rules. Who am I?

Does an unused member variable take up memory?

Leveling the sagging side of the home

Movie: boy escapes the real world and goes to a fantasy world with big furry trolls

Playing a 7-string guitar song on a 6-string guitar

Is it appropriate to ask a former professor to order a book for me through an inter-library loan?

Is it a Cyclops number? "Nobody" knows!

The (Easy) Road to Code

Rationale to prefer local variables over instance variables?

Help! My Character is too much for her story!

Traveling to heavily polluted city, what practical measures can I take to minimize impact?

What should I do when a paper is published similar to my PhD thesis without citation?

Do Cubics always have one real root?

Locked Away- What am I?

What is the "determinant" of two vectors?



A tough series related with a hypergeometric function with quarter integer parameters


Closed-form of $int_0^1 fracln^2(x)sqrtx(a-bx),dx$Definite integral of arcsine over square-root of quadraticHow to prove closed form for a binomial sum?Identities related to hypergeometric functionsAbout a sequence related with the complete elliptic integral of the second kindSimplifying real part of hypergeometric function with complex parametersHypergeometric sum with two binomial factors both in the numerator and in the denominator.An elementary proof of $int_0^1fracarctan xsqrtx(1-x^2),dx = frac132sqrt2pi,Gammaleft(tfrac14right)^2$Looking for a closed form for a $_4 F_3left(ldots,1right)$Generating function of the sequence $binom2nn^3H_n$Infinite series with harmonic numbers related to elliptic integralsAbout the integral $int_0^1fracarctan(x),dxsqrtx(1-x^2)$ and related hypergeometric functionsAn integral inequality related with Hypergeometric function













9












$begingroup$



Is it possible to express $$ sum_ngeq
0fracbinom4n2nbinom2nn64^n(4n+1) = phantom_3
F_2left(frac14,frac14,frac34; 1,frac54; 1right)
$$
in terms of standard mathematical constants given by Euler sums and values of the $Gamma$ function?




This problem arise from studying the interplay between elliptic integrals, hypergeometric functions and Fourier-Legendre expansions. According to Mathematica's notation we have
$$ sum_ngeq 0fracbinom4n2nbinom2nn64^ny^2n=frac2pisqrt1+y,Kleft(frac2y1+yright) $$
for any $yin[0,1)$, where the complete elliptic integral of the first kind fulfills the functional identity
$$forall xin[0,1),qquad K(x) = fracpi2cdottextAGMleft(1,sqrt1-xright) $$
hence the computation of the above series boils down to the computation of
$$ int_0^1Kleft(frac2y^21+y^2right)frac2,dypisqrt1+y^2stackrelymapstosqrtfracx2-x=fracsqrt2piint_0^1fracK(x)sqrtx(2-x),dx\=frac1piint_-1/2^+inftyfracarctansqrtusqrtu(1+u)(1+2u),du$$
where $K(x),sqrt2-x,frac1sqrtx,frac1sqrt2-x$ all have a pretty simple FL expansion, allowing an easy explicit evaluation of similar integrals. This one, however, is a tougher nut to crack, since $frac12-x$ does not have a nice FL expansion. There are good reasons for believing $Gammaleft(frac14right)$ is involved, since a related series fulfills the following identity:
$$ sum_ngeq 0fracbinom2nn^216^n(4n+1)=frac12piint_0^1K(x),x^-3/4,dx = frac116pi^2,Gammaleft(frac14right)^4 $$
which ultimately is a consequence of Clausen's formula, stating that in some particular circumstances the square of a $phantom_2 F_1$ function is a $phantom_3 F_2$ function.




March 2019 Update: after some manipulations, it turns out that the computation of the original $phantom_3 F_2$ is equivalent to the computation of the integral
$$ int_0^1frac-log xsqrtx(1+6x+x^2),dx = frac1sqrt2int_0^+inftyfracz,dzsqrt3+cosh z$$
which is way less scary. Additionally, nospoon has already tackled similar integrals, so I guess he might have something interesting to share.











share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The hypergeometric term in question can also be expressed as a double integral of a relatively "nice" rational function: $_3F_2left(frac14,frac14,frac34;1,frac54;1right)=frac2sqrt2piint_0^1mathrmdxint_0^1mathrmdy,fracx^21-x^4+x^4y^4$.
    $endgroup$
    – David H
    Sep 15 '17 at 10:27










  • $begingroup$
    Which essentially boils down to $$ int_0^1fracarctan(z)+textarctanh(z)(1-z^4)^3/4,dz.$$ Maybe using some change of variables $varphi:(0,1)^2to (0,1)^2$ the integral $$ iint_(0,1)^2fracx^2,dx,dy1-x^4+x^4 y^4$$ becomes something with a nicer structure.
    $endgroup$
    – Jack D'Aurizio
    Sep 15 '17 at 15:11










  • $begingroup$
    I've mulled over the integral some more, and I think it may actually be a special case of an integral I asked about here. Some connections connections are made there with Appell functions that may prove useful somewhere, but for most part every way I try to attack this integral seems to be sending me in circles...
    $endgroup$
    – David H
    Sep 25 '17 at 16:44















9












$begingroup$



Is it possible to express $$ sum_ngeq
0fracbinom4n2nbinom2nn64^n(4n+1) = phantom_3
F_2left(frac14,frac14,frac34; 1,frac54; 1right)
$$
in terms of standard mathematical constants given by Euler sums and values of the $Gamma$ function?




This problem arise from studying the interplay between elliptic integrals, hypergeometric functions and Fourier-Legendre expansions. According to Mathematica's notation we have
$$ sum_ngeq 0fracbinom4n2nbinom2nn64^ny^2n=frac2pisqrt1+y,Kleft(frac2y1+yright) $$
for any $yin[0,1)$, where the complete elliptic integral of the first kind fulfills the functional identity
$$forall xin[0,1),qquad K(x) = fracpi2cdottextAGMleft(1,sqrt1-xright) $$
hence the computation of the above series boils down to the computation of
$$ int_0^1Kleft(frac2y^21+y^2right)frac2,dypisqrt1+y^2stackrelymapstosqrtfracx2-x=fracsqrt2piint_0^1fracK(x)sqrtx(2-x),dx\=frac1piint_-1/2^+inftyfracarctansqrtusqrtu(1+u)(1+2u),du$$
where $K(x),sqrt2-x,frac1sqrtx,frac1sqrt2-x$ all have a pretty simple FL expansion, allowing an easy explicit evaluation of similar integrals. This one, however, is a tougher nut to crack, since $frac12-x$ does not have a nice FL expansion. There are good reasons for believing $Gammaleft(frac14right)$ is involved, since a related series fulfills the following identity:
$$ sum_ngeq 0fracbinom2nn^216^n(4n+1)=frac12piint_0^1K(x),x^-3/4,dx = frac116pi^2,Gammaleft(frac14right)^4 $$
which ultimately is a consequence of Clausen's formula, stating that in some particular circumstances the square of a $phantom_2 F_1$ function is a $phantom_3 F_2$ function.




March 2019 Update: after some manipulations, it turns out that the computation of the original $phantom_3 F_2$ is equivalent to the computation of the integral
$$ int_0^1frac-log xsqrtx(1+6x+x^2),dx = frac1sqrt2int_0^+inftyfracz,dzsqrt3+cosh z$$
which is way less scary. Additionally, nospoon has already tackled similar integrals, so I guess he might have something interesting to share.











share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The hypergeometric term in question can also be expressed as a double integral of a relatively "nice" rational function: $_3F_2left(frac14,frac14,frac34;1,frac54;1right)=frac2sqrt2piint_0^1mathrmdxint_0^1mathrmdy,fracx^21-x^4+x^4y^4$.
    $endgroup$
    – David H
    Sep 15 '17 at 10:27










  • $begingroup$
    Which essentially boils down to $$ int_0^1fracarctan(z)+textarctanh(z)(1-z^4)^3/4,dz.$$ Maybe using some change of variables $varphi:(0,1)^2to (0,1)^2$ the integral $$ iint_(0,1)^2fracx^2,dx,dy1-x^4+x^4 y^4$$ becomes something with a nicer structure.
    $endgroup$
    – Jack D'Aurizio
    Sep 15 '17 at 15:11










  • $begingroup$
    I've mulled over the integral some more, and I think it may actually be a special case of an integral I asked about here. Some connections connections are made there with Appell functions that may prove useful somewhere, but for most part every way I try to attack this integral seems to be sending me in circles...
    $endgroup$
    – David H
    Sep 25 '17 at 16:44













9












9








9


7



$begingroup$



Is it possible to express $$ sum_ngeq
0fracbinom4n2nbinom2nn64^n(4n+1) = phantom_3
F_2left(frac14,frac14,frac34; 1,frac54; 1right)
$$
in terms of standard mathematical constants given by Euler sums and values of the $Gamma$ function?




This problem arise from studying the interplay between elliptic integrals, hypergeometric functions and Fourier-Legendre expansions. According to Mathematica's notation we have
$$ sum_ngeq 0fracbinom4n2nbinom2nn64^ny^2n=frac2pisqrt1+y,Kleft(frac2y1+yright) $$
for any $yin[0,1)$, where the complete elliptic integral of the first kind fulfills the functional identity
$$forall xin[0,1),qquad K(x) = fracpi2cdottextAGMleft(1,sqrt1-xright) $$
hence the computation of the above series boils down to the computation of
$$ int_0^1Kleft(frac2y^21+y^2right)frac2,dypisqrt1+y^2stackrelymapstosqrtfracx2-x=fracsqrt2piint_0^1fracK(x)sqrtx(2-x),dx\=frac1piint_-1/2^+inftyfracarctansqrtusqrtu(1+u)(1+2u),du$$
where $K(x),sqrt2-x,frac1sqrtx,frac1sqrt2-x$ all have a pretty simple FL expansion, allowing an easy explicit evaluation of similar integrals. This one, however, is a tougher nut to crack, since $frac12-x$ does not have a nice FL expansion. There are good reasons for believing $Gammaleft(frac14right)$ is involved, since a related series fulfills the following identity:
$$ sum_ngeq 0fracbinom2nn^216^n(4n+1)=frac12piint_0^1K(x),x^-3/4,dx = frac116pi^2,Gammaleft(frac14right)^4 $$
which ultimately is a consequence of Clausen's formula, stating that in some particular circumstances the square of a $phantom_2 F_1$ function is a $phantom_3 F_2$ function.




March 2019 Update: after some manipulations, it turns out that the computation of the original $phantom_3 F_2$ is equivalent to the computation of the integral
$$ int_0^1frac-log xsqrtx(1+6x+x^2),dx = frac1sqrt2int_0^+inftyfracz,dzsqrt3+cosh z$$
which is way less scary. Additionally, nospoon has already tackled similar integrals, so I guess he might have something interesting to share.











share|cite|improve this question











$endgroup$





Is it possible to express $$ sum_ngeq
0fracbinom4n2nbinom2nn64^n(4n+1) = phantom_3
F_2left(frac14,frac14,frac34; 1,frac54; 1right)
$$
in terms of standard mathematical constants given by Euler sums and values of the $Gamma$ function?




This problem arise from studying the interplay between elliptic integrals, hypergeometric functions and Fourier-Legendre expansions. According to Mathematica's notation we have
$$ sum_ngeq 0fracbinom4n2nbinom2nn64^ny^2n=frac2pisqrt1+y,Kleft(frac2y1+yright) $$
for any $yin[0,1)$, where the complete elliptic integral of the first kind fulfills the functional identity
$$forall xin[0,1),qquad K(x) = fracpi2cdottextAGMleft(1,sqrt1-xright) $$
hence the computation of the above series boils down to the computation of
$$ int_0^1Kleft(frac2y^21+y^2right)frac2,dypisqrt1+y^2stackrelymapstosqrtfracx2-x=fracsqrt2piint_0^1fracK(x)sqrtx(2-x),dx\=frac1piint_-1/2^+inftyfracarctansqrtusqrtu(1+u)(1+2u),du$$
where $K(x),sqrt2-x,frac1sqrtx,frac1sqrt2-x$ all have a pretty simple FL expansion, allowing an easy explicit evaluation of similar integrals. This one, however, is a tougher nut to crack, since $frac12-x$ does not have a nice FL expansion. There are good reasons for believing $Gammaleft(frac14right)$ is involved, since a related series fulfills the following identity:
$$ sum_ngeq 0fracbinom2nn^216^n(4n+1)=frac12piint_0^1K(x),x^-3/4,dx = frac116pi^2,Gammaleft(frac14right)^4 $$
which ultimately is a consequence of Clausen's formula, stating that in some particular circumstances the square of a $phantom_2 F_1$ function is a $phantom_3 F_2$ function.




March 2019 Update: after some manipulations, it turns out that the computation of the original $phantom_3 F_2$ is equivalent to the computation of the integral
$$ int_0^1frac-log xsqrtx(1+6x+x^2),dx = frac1sqrt2int_0^+inftyfracz,dzsqrt3+cosh z$$
which is way less scary. Additionally, nospoon has already tackled similar integrals, so I guess he might have something interesting to share.








sequences-and-series special-functions hypergeometric-function elliptic-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Jack D'Aurizio

















asked Sep 15 '17 at 0:05









Jack D'AurizioJack D'Aurizio

291k33284666




291k33284666







  • 1




    $begingroup$
    The hypergeometric term in question can also be expressed as a double integral of a relatively "nice" rational function: $_3F_2left(frac14,frac14,frac34;1,frac54;1right)=frac2sqrt2piint_0^1mathrmdxint_0^1mathrmdy,fracx^21-x^4+x^4y^4$.
    $endgroup$
    – David H
    Sep 15 '17 at 10:27










  • $begingroup$
    Which essentially boils down to $$ int_0^1fracarctan(z)+textarctanh(z)(1-z^4)^3/4,dz.$$ Maybe using some change of variables $varphi:(0,1)^2to (0,1)^2$ the integral $$ iint_(0,1)^2fracx^2,dx,dy1-x^4+x^4 y^4$$ becomes something with a nicer structure.
    $endgroup$
    – Jack D'Aurizio
    Sep 15 '17 at 15:11










  • $begingroup$
    I've mulled over the integral some more, and I think it may actually be a special case of an integral I asked about here. Some connections connections are made there with Appell functions that may prove useful somewhere, but for most part every way I try to attack this integral seems to be sending me in circles...
    $endgroup$
    – David H
    Sep 25 '17 at 16:44












  • 1




    $begingroup$
    The hypergeometric term in question can also be expressed as a double integral of a relatively "nice" rational function: $_3F_2left(frac14,frac14,frac34;1,frac54;1right)=frac2sqrt2piint_0^1mathrmdxint_0^1mathrmdy,fracx^21-x^4+x^4y^4$.
    $endgroup$
    – David H
    Sep 15 '17 at 10:27










  • $begingroup$
    Which essentially boils down to $$ int_0^1fracarctan(z)+textarctanh(z)(1-z^4)^3/4,dz.$$ Maybe using some change of variables $varphi:(0,1)^2to (0,1)^2$ the integral $$ iint_(0,1)^2fracx^2,dx,dy1-x^4+x^4 y^4$$ becomes something with a nicer structure.
    $endgroup$
    – Jack D'Aurizio
    Sep 15 '17 at 15:11










  • $begingroup$
    I've mulled over the integral some more, and I think it may actually be a special case of an integral I asked about here. Some connections connections are made there with Appell functions that may prove useful somewhere, but for most part every way I try to attack this integral seems to be sending me in circles...
    $endgroup$
    – David H
    Sep 25 '17 at 16:44







1




1




$begingroup$
The hypergeometric term in question can also be expressed as a double integral of a relatively "nice" rational function: $_3F_2left(frac14,frac14,frac34;1,frac54;1right)=frac2sqrt2piint_0^1mathrmdxint_0^1mathrmdy,fracx^21-x^4+x^4y^4$.
$endgroup$
– David H
Sep 15 '17 at 10:27




$begingroup$
The hypergeometric term in question can also be expressed as a double integral of a relatively "nice" rational function: $_3F_2left(frac14,frac14,frac34;1,frac54;1right)=frac2sqrt2piint_0^1mathrmdxint_0^1mathrmdy,fracx^21-x^4+x^4y^4$.
$endgroup$
– David H
Sep 15 '17 at 10:27












$begingroup$
Which essentially boils down to $$ int_0^1fracarctan(z)+textarctanh(z)(1-z^4)^3/4,dz.$$ Maybe using some change of variables $varphi:(0,1)^2to (0,1)^2$ the integral $$ iint_(0,1)^2fracx^2,dx,dy1-x^4+x^4 y^4$$ becomes something with a nicer structure.
$endgroup$
– Jack D'Aurizio
Sep 15 '17 at 15:11




$begingroup$
Which essentially boils down to $$ int_0^1fracarctan(z)+textarctanh(z)(1-z^4)^3/4,dz.$$ Maybe using some change of variables $varphi:(0,1)^2to (0,1)^2$ the integral $$ iint_(0,1)^2fracx^2,dx,dy1-x^4+x^4 y^4$$ becomes something with a nicer structure.
$endgroup$
– Jack D'Aurizio
Sep 15 '17 at 15:11












$begingroup$
I've mulled over the integral some more, and I think it may actually be a special case of an integral I asked about here. Some connections connections are made there with Appell functions that may prove useful somewhere, but for most part every way I try to attack this integral seems to be sending me in circles...
$endgroup$
– David H
Sep 25 '17 at 16:44




$begingroup$
I've mulled over the integral some more, and I think it may actually be a special case of an integral I asked about here. Some connections connections are made there with Appell functions that may prove useful somewhere, but for most part every way I try to attack this integral seems to be sending me in circles...
$endgroup$
– David H
Sep 25 '17 at 16:44










1 Answer
1






active

oldest

votes


















4












$begingroup$

This is not going to be a full answer but I think I am able to contribute a little more compared to what has been presented above therefore I present my approach.
Denote :
beginequation
S(y):= sumlimits_n=0^infty binom4 n2 n binom2 nn fracy^2 n64^n
endequation
We use the good old identity:
beginequation
binom2 nn=(-4)^n cdot binom-frac12n
endequation
and we get
begineqnarray
S(y)&=& sumlimits_n=0^infty binom-frac12n cdot underbracebinom-frac122n_frac1pi intlimits_0^1 t^-1/2 (1-t)^2 n-1/2 dt cdot (-y^2)^n\
&=& frac1pi intlimits_0^1 frac1sqrtt(1-t)(1-y^2 t^2) dt
&=&
endeqnarray
Now in the last equation above we replace $y$ by $y^2$ and integrate over $y$ from zero to unity. This gives:
begineqnarray
intlimits_0^1 S(y^2) dy&=& frac1pi intlimits_0^1 fracF_2,1[frac14,frac12,frac54,t^2]sqrtt(1-t)dt\
&=&frac1pi intlimits_0^1 fracF[arcsin(sqrtt),-1]t sqrt1-t dt\
&=&-frac1piintlimits_0^1 frac2log(1-sqrt1-t)-log(t)2sqrtt(1-t^2)dt\
&=&-frac1pi left(2intlimits_0^1 fraclog(t)sqrtt(t-2)(t-1+sqrt2)(t-1-sqrt2)dt+pi^3/2 fracGamma(5/4)Gamma(3/4)right)\
&=&-frac1pi left(
2 sqrt2 intlimits_0^pi fraclog[sin(u/4)]sqrt3-cos(u)-
frac2 sqrtpi Gamma(5/4) (pi+4 log(2))Gamma(-1/4)
right)\
&=&-frac1pi left(
sqrt2 intlimits_0^pi fraclog[1-cos(u/2)]sqrt3-cos(u)du-
frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
right)\
&=&
-frac1pi left(
sqrt2 intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du-
frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
right)
endeqnarray
In the first line above I expanded the square root in a series and integrated over $y$ term by term. In the second line above I went to Wolframs site http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/09/19/02/ and looked up the closed form for the particular hypergeometric function. Here $F[phi,m]$ is the elliptic function of the first kind. In the third line I integrated by parts once and finally in the forth line I integrated the second term by using appropriate Euler sums and in the first term we substituted for $1-sqrt1-t$.In the fifthe line I substituted for $t:=2 sin(u)^2$ and in the sixth line I simplified the result using trigonometric half-angle identities.



The remaining integral can be actually simplified by expanding the integrand in a double series and then doing one of the sums. Here we just state the result:
begineqnarray
&&intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du =
-fracpi2sumlimits_lambda=0^infty
binom-1/2lambda (-frac12)^lambda cdot \
&&
left(frac1+lambda1+2lambda binom1/2+lambda-1/2(2 log(2)+H_lambda) + binomlambda-1/2 F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1] right)
endeqnarray
Now, the remaining hypergeometric functions $F_3,2$ can also be simplified and expressed through Catalan numbers. We lack time to complete the whole calculations and therefore we have to leave this apart for the time being and complete this later.



Update: By using the following identity:
beginequation
frac(1+lambda)^(l)(3/2+lambda)^(l) = frac(3/2)^(lambda)1^(lambda) cdot frac1^(l)(3/2)^(l) cdot frac(l+1)^(lambda)(l+3/2)^(lambda)
endequation
and then by decomposing the last term on the righthand side into partial fractions in $l$ we easily get the following identity:
begineqnarray
&&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
frac(3/2)^(lambda)1^(lambda) cdot left(right.\
&&left.
2 C- sumlimits_j=1^lambda j binom-1/2+jlambda binomlambdaj (-1)^lambda-j cdot intlimits_0^1 theta^j-1/2 cdot F_3,2[beginarrayrrr frac12& 1&1\ frac32& frac32 & endarray;theta]dthetaright.\
&&left.
right)=\
&&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
&&left.
2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
&&left.
(-1)^lsumlimits_j=1^l j binom-1/2j binom-1/2l-j cdot right.\
&&left.intlimits_0^pi/2 [sin(u)]^2j-1 2 cos(u)left( i textLi_2left(-e^i uright)-i textLi_2left(e^i uright)+u log left(frac1-e^i u1+e^i uright)right)duright.\
&&left.
right)=\
&&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
&&left.
2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
&&left.
(-1)^lsumlimits_j=1^lsumlimits_p=-j-1^j-1 j binom-1/2j binom-1/2l-j cdot frac(-1)^p+l2^2j-1[binom2j-1p+1 - binom2j-1p+j+1]cdotright.\
&&left.intlimits_1^imath z^p+1 left(log(z) log(frac1-z1+z)+Li_2(z)-Li_2(-z)right)dzright.\
&&left.
right)=\
&&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
&&left.
2 C+right.\
&&left.
frac12
sumlimits_j=0^l-1sumlimits_p=-l-1,pneq -1^l-1
binom-3/2j binom-1/2l-1-j frac12^2j+1
[binom2j+1p+j+1-binom2j+1p+j+2]cdotright.\
&&left.
frac(-1)^p+lp+1
left((1+(-1)^p) cdot C - sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2right)right.\
&&left.
right)
endeqnarray
where in the second line we used the closed form expression from http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/08/05/02/01/07/0001/ and we changed the variables appropriately. In the third line we substituted for $z:=exp(imath u)$. In the fourth line we calculated the integrals using integration by parts and then simplified the result.



In summary we have shown that :
begineqnarray
&&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
2 frac(1/2)^(lambda) (3/2)^(lambda)lambda! cdot lambda! cdot C + frac(3/2)^(lambda)lambda!cdot mathfrak A_lambda\
&&intlimits_0^pi/2 fraclog(1-cos(u))sqrt1-1/2 cos(u)^2=fracsqrtfrac2pi Gamma left(frac14right) (4 C+pi log (2))Gamma left(-frac14right)-\
&& sumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)\
&&intlimits_0^1 S(y^2) dy=-frac1pileft(right.\
&&left.
-frac2 Gamma left(frac54right) (pi (pi -2 log (4))-16 C)sqrtpi Gamma left(-frac14right)right.\
&&left.
-sqrt2cdotsumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)right.\
&&left.
right)
endeqnarray
where
begineqnarray
&&mathfrak A_lambda := \
&&left(
sumlimits_j=0^lambda-1 sumlimits_beginarrayr p=-lambda-1\pneq-1endarray^lambda-1
binom-3/2j binom-1/2lambda-1-j frac[binom2j+1p+j+1 - binom2j+1p+j+2]2^2 j+2
frac(-1)^p+lambda+1p+1cdot
sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2
right)
endeqnarray
Note : The remaining infinite sum converges quite quickly. Truncating the sum at the first one hundred terms produces a more than thirty digits accuracy. On the other hand the the series in question converges very slowly; one needs to take five thousand terms in order to get the first four decimal digits right.






share|cite|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2429957%2fa-tough-series-related-with-a-hypergeometric-function-with-quarter-integer-param%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    This is not going to be a full answer but I think I am able to contribute a little more compared to what has been presented above therefore I present my approach.
    Denote :
    beginequation
    S(y):= sumlimits_n=0^infty binom4 n2 n binom2 nn fracy^2 n64^n
    endequation
    We use the good old identity:
    beginequation
    binom2 nn=(-4)^n cdot binom-frac12n
    endequation
    and we get
    begineqnarray
    S(y)&=& sumlimits_n=0^infty binom-frac12n cdot underbracebinom-frac122n_frac1pi intlimits_0^1 t^-1/2 (1-t)^2 n-1/2 dt cdot (-y^2)^n\
    &=& frac1pi intlimits_0^1 frac1sqrtt(1-t)(1-y^2 t^2) dt
    &=&
    endeqnarray
    Now in the last equation above we replace $y$ by $y^2$ and integrate over $y$ from zero to unity. This gives:
    begineqnarray
    intlimits_0^1 S(y^2) dy&=& frac1pi intlimits_0^1 fracF_2,1[frac14,frac12,frac54,t^2]sqrtt(1-t)dt\
    &=&frac1pi intlimits_0^1 fracF[arcsin(sqrtt),-1]t sqrt1-t dt\
    &=&-frac1piintlimits_0^1 frac2log(1-sqrt1-t)-log(t)2sqrtt(1-t^2)dt\
    &=&-frac1pi left(2intlimits_0^1 fraclog(t)sqrtt(t-2)(t-1+sqrt2)(t-1-sqrt2)dt+pi^3/2 fracGamma(5/4)Gamma(3/4)right)\
    &=&-frac1pi left(
    2 sqrt2 intlimits_0^pi fraclog[sin(u/4)]sqrt3-cos(u)-
    frac2 sqrtpi Gamma(5/4) (pi+4 log(2))Gamma(-1/4)
    right)\
    &=&-frac1pi left(
    sqrt2 intlimits_0^pi fraclog[1-cos(u/2)]sqrt3-cos(u)du-
    frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
    right)\
    &=&
    -frac1pi left(
    sqrt2 intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du-
    frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
    right)
    endeqnarray
    In the first line above I expanded the square root in a series and integrated over $y$ term by term. In the second line above I went to Wolframs site http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/09/19/02/ and looked up the closed form for the particular hypergeometric function. Here $F[phi,m]$ is the elliptic function of the first kind. In the third line I integrated by parts once and finally in the forth line I integrated the second term by using appropriate Euler sums and in the first term we substituted for $1-sqrt1-t$.In the fifthe line I substituted for $t:=2 sin(u)^2$ and in the sixth line I simplified the result using trigonometric half-angle identities.



    The remaining integral can be actually simplified by expanding the integrand in a double series and then doing one of the sums. Here we just state the result:
    begineqnarray
    &&intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du =
    -fracpi2sumlimits_lambda=0^infty
    binom-1/2lambda (-frac12)^lambda cdot \
    &&
    left(frac1+lambda1+2lambda binom1/2+lambda-1/2(2 log(2)+H_lambda) + binomlambda-1/2 F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1] right)
    endeqnarray
    Now, the remaining hypergeometric functions $F_3,2$ can also be simplified and expressed through Catalan numbers. We lack time to complete the whole calculations and therefore we have to leave this apart for the time being and complete this later.



    Update: By using the following identity:
    beginequation
    frac(1+lambda)^(l)(3/2+lambda)^(l) = frac(3/2)^(lambda)1^(lambda) cdot frac1^(l)(3/2)^(l) cdot frac(l+1)^(lambda)(l+3/2)^(lambda)
    endequation
    and then by decomposing the last term on the righthand side into partial fractions in $l$ we easily get the following identity:
    begineqnarray
    &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
    frac(3/2)^(lambda)1^(lambda) cdot left(right.\
    &&left.
    2 C- sumlimits_j=1^lambda j binom-1/2+jlambda binomlambdaj (-1)^lambda-j cdot intlimits_0^1 theta^j-1/2 cdot F_3,2[beginarrayrrr frac12& 1&1\ frac32& frac32 & endarray;theta]dthetaright.\
    &&left.
    right)=\
    &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
    &&left.
    2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
    &&left.
    (-1)^lsumlimits_j=1^l j binom-1/2j binom-1/2l-j cdot right.\
    &&left.intlimits_0^pi/2 [sin(u)]^2j-1 2 cos(u)left( i textLi_2left(-e^i uright)-i textLi_2left(e^i uright)+u log left(frac1-e^i u1+e^i uright)right)duright.\
    &&left.
    right)=\
    &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
    &&left.
    2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
    &&left.
    (-1)^lsumlimits_j=1^lsumlimits_p=-j-1^j-1 j binom-1/2j binom-1/2l-j cdot frac(-1)^p+l2^2j-1[binom2j-1p+1 - binom2j-1p+j+1]cdotright.\
    &&left.intlimits_1^imath z^p+1 left(log(z) log(frac1-z1+z)+Li_2(z)-Li_2(-z)right)dzright.\
    &&left.
    right)=\
    &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
    &&left.
    2 C+right.\
    &&left.
    frac12
    sumlimits_j=0^l-1sumlimits_p=-l-1,pneq -1^l-1
    binom-3/2j binom-1/2l-1-j frac12^2j+1
    [binom2j+1p+j+1-binom2j+1p+j+2]cdotright.\
    &&left.
    frac(-1)^p+lp+1
    left((1+(-1)^p) cdot C - sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2right)right.\
    &&left.
    right)
    endeqnarray
    where in the second line we used the closed form expression from http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/08/05/02/01/07/0001/ and we changed the variables appropriately. In the third line we substituted for $z:=exp(imath u)$. In the fourth line we calculated the integrals using integration by parts and then simplified the result.



    In summary we have shown that :
    begineqnarray
    &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
    2 frac(1/2)^(lambda) (3/2)^(lambda)lambda! cdot lambda! cdot C + frac(3/2)^(lambda)lambda!cdot mathfrak A_lambda\
    &&intlimits_0^pi/2 fraclog(1-cos(u))sqrt1-1/2 cos(u)^2=fracsqrtfrac2pi Gamma left(frac14right) (4 C+pi log (2))Gamma left(-frac14right)-\
    && sumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)\
    &&intlimits_0^1 S(y^2) dy=-frac1pileft(right.\
    &&left.
    -frac2 Gamma left(frac54right) (pi (pi -2 log (4))-16 C)sqrtpi Gamma left(-frac14right)right.\
    &&left.
    -sqrt2cdotsumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)right.\
    &&left.
    right)
    endeqnarray
    where
    begineqnarray
    &&mathfrak A_lambda := \
    &&left(
    sumlimits_j=0^lambda-1 sumlimits_beginarrayr p=-lambda-1\pneq-1endarray^lambda-1
    binom-3/2j binom-1/2lambda-1-j frac[binom2j+1p+j+1 - binom2j+1p+j+2]2^2 j+2
    frac(-1)^p+lambda+1p+1cdot
    sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2
    right)
    endeqnarray
    Note : The remaining infinite sum converges quite quickly. Truncating the sum at the first one hundred terms produces a more than thirty digits accuracy. On the other hand the the series in question converges very slowly; one needs to take five thousand terms in order to get the first four decimal digits right.






    share|cite|improve this answer











    $endgroup$

















      4












      $begingroup$

      This is not going to be a full answer but I think I am able to contribute a little more compared to what has been presented above therefore I present my approach.
      Denote :
      beginequation
      S(y):= sumlimits_n=0^infty binom4 n2 n binom2 nn fracy^2 n64^n
      endequation
      We use the good old identity:
      beginequation
      binom2 nn=(-4)^n cdot binom-frac12n
      endequation
      and we get
      begineqnarray
      S(y)&=& sumlimits_n=0^infty binom-frac12n cdot underbracebinom-frac122n_frac1pi intlimits_0^1 t^-1/2 (1-t)^2 n-1/2 dt cdot (-y^2)^n\
      &=& frac1pi intlimits_0^1 frac1sqrtt(1-t)(1-y^2 t^2) dt
      &=&
      endeqnarray
      Now in the last equation above we replace $y$ by $y^2$ and integrate over $y$ from zero to unity. This gives:
      begineqnarray
      intlimits_0^1 S(y^2) dy&=& frac1pi intlimits_0^1 fracF_2,1[frac14,frac12,frac54,t^2]sqrtt(1-t)dt\
      &=&frac1pi intlimits_0^1 fracF[arcsin(sqrtt),-1]t sqrt1-t dt\
      &=&-frac1piintlimits_0^1 frac2log(1-sqrt1-t)-log(t)2sqrtt(1-t^2)dt\
      &=&-frac1pi left(2intlimits_0^1 fraclog(t)sqrtt(t-2)(t-1+sqrt2)(t-1-sqrt2)dt+pi^3/2 fracGamma(5/4)Gamma(3/4)right)\
      &=&-frac1pi left(
      2 sqrt2 intlimits_0^pi fraclog[sin(u/4)]sqrt3-cos(u)-
      frac2 sqrtpi Gamma(5/4) (pi+4 log(2))Gamma(-1/4)
      right)\
      &=&-frac1pi left(
      sqrt2 intlimits_0^pi fraclog[1-cos(u/2)]sqrt3-cos(u)du-
      frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
      right)\
      &=&
      -frac1pi left(
      sqrt2 intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du-
      frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
      right)
      endeqnarray
      In the first line above I expanded the square root in a series and integrated over $y$ term by term. In the second line above I went to Wolframs site http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/09/19/02/ and looked up the closed form for the particular hypergeometric function. Here $F[phi,m]$ is the elliptic function of the first kind. In the third line I integrated by parts once and finally in the forth line I integrated the second term by using appropriate Euler sums and in the first term we substituted for $1-sqrt1-t$.In the fifthe line I substituted for $t:=2 sin(u)^2$ and in the sixth line I simplified the result using trigonometric half-angle identities.



      The remaining integral can be actually simplified by expanding the integrand in a double series and then doing one of the sums. Here we just state the result:
      begineqnarray
      &&intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du =
      -fracpi2sumlimits_lambda=0^infty
      binom-1/2lambda (-frac12)^lambda cdot \
      &&
      left(frac1+lambda1+2lambda binom1/2+lambda-1/2(2 log(2)+H_lambda) + binomlambda-1/2 F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1] right)
      endeqnarray
      Now, the remaining hypergeometric functions $F_3,2$ can also be simplified and expressed through Catalan numbers. We lack time to complete the whole calculations and therefore we have to leave this apart for the time being and complete this later.



      Update: By using the following identity:
      beginequation
      frac(1+lambda)^(l)(3/2+lambda)^(l) = frac(3/2)^(lambda)1^(lambda) cdot frac1^(l)(3/2)^(l) cdot frac(l+1)^(lambda)(l+3/2)^(lambda)
      endequation
      and then by decomposing the last term on the righthand side into partial fractions in $l$ we easily get the following identity:
      begineqnarray
      &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
      frac(3/2)^(lambda)1^(lambda) cdot left(right.\
      &&left.
      2 C- sumlimits_j=1^lambda j binom-1/2+jlambda binomlambdaj (-1)^lambda-j cdot intlimits_0^1 theta^j-1/2 cdot F_3,2[beginarrayrrr frac12& 1&1\ frac32& frac32 & endarray;theta]dthetaright.\
      &&left.
      right)=\
      &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
      &&left.
      2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
      &&left.
      (-1)^lsumlimits_j=1^l j binom-1/2j binom-1/2l-j cdot right.\
      &&left.intlimits_0^pi/2 [sin(u)]^2j-1 2 cos(u)left( i textLi_2left(-e^i uright)-i textLi_2left(e^i uright)+u log left(frac1-e^i u1+e^i uright)right)duright.\
      &&left.
      right)=\
      &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
      &&left.
      2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
      &&left.
      (-1)^lsumlimits_j=1^lsumlimits_p=-j-1^j-1 j binom-1/2j binom-1/2l-j cdot frac(-1)^p+l2^2j-1[binom2j-1p+1 - binom2j-1p+j+1]cdotright.\
      &&left.intlimits_1^imath z^p+1 left(log(z) log(frac1-z1+z)+Li_2(z)-Li_2(-z)right)dzright.\
      &&left.
      right)=\
      &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
      &&left.
      2 C+right.\
      &&left.
      frac12
      sumlimits_j=0^l-1sumlimits_p=-l-1,pneq -1^l-1
      binom-3/2j binom-1/2l-1-j frac12^2j+1
      [binom2j+1p+j+1-binom2j+1p+j+2]cdotright.\
      &&left.
      frac(-1)^p+lp+1
      left((1+(-1)^p) cdot C - sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2right)right.\
      &&left.
      right)
      endeqnarray
      where in the second line we used the closed form expression from http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/08/05/02/01/07/0001/ and we changed the variables appropriately. In the third line we substituted for $z:=exp(imath u)$. In the fourth line we calculated the integrals using integration by parts and then simplified the result.



      In summary we have shown that :
      begineqnarray
      &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
      2 frac(1/2)^(lambda) (3/2)^(lambda)lambda! cdot lambda! cdot C + frac(3/2)^(lambda)lambda!cdot mathfrak A_lambda\
      &&intlimits_0^pi/2 fraclog(1-cos(u))sqrt1-1/2 cos(u)^2=fracsqrtfrac2pi Gamma left(frac14right) (4 C+pi log (2))Gamma left(-frac14right)-\
      && sumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)\
      &&intlimits_0^1 S(y^2) dy=-frac1pileft(right.\
      &&left.
      -frac2 Gamma left(frac54right) (pi (pi -2 log (4))-16 C)sqrtpi Gamma left(-frac14right)right.\
      &&left.
      -sqrt2cdotsumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)right.\
      &&left.
      right)
      endeqnarray
      where
      begineqnarray
      &&mathfrak A_lambda := \
      &&left(
      sumlimits_j=0^lambda-1 sumlimits_beginarrayr p=-lambda-1\pneq-1endarray^lambda-1
      binom-3/2j binom-1/2lambda-1-j frac[binom2j+1p+j+1 - binom2j+1p+j+2]2^2 j+2
      frac(-1)^p+lambda+1p+1cdot
      sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2
      right)
      endeqnarray
      Note : The remaining infinite sum converges quite quickly. Truncating the sum at the first one hundred terms produces a more than thirty digits accuracy. On the other hand the the series in question converges very slowly; one needs to take five thousand terms in order to get the first four decimal digits right.






      share|cite|improve this answer











      $endgroup$















        4












        4








        4





        $begingroup$

        This is not going to be a full answer but I think I am able to contribute a little more compared to what has been presented above therefore I present my approach.
        Denote :
        beginequation
        S(y):= sumlimits_n=0^infty binom4 n2 n binom2 nn fracy^2 n64^n
        endequation
        We use the good old identity:
        beginequation
        binom2 nn=(-4)^n cdot binom-frac12n
        endequation
        and we get
        begineqnarray
        S(y)&=& sumlimits_n=0^infty binom-frac12n cdot underbracebinom-frac122n_frac1pi intlimits_0^1 t^-1/2 (1-t)^2 n-1/2 dt cdot (-y^2)^n\
        &=& frac1pi intlimits_0^1 frac1sqrtt(1-t)(1-y^2 t^2) dt
        &=&
        endeqnarray
        Now in the last equation above we replace $y$ by $y^2$ and integrate over $y$ from zero to unity. This gives:
        begineqnarray
        intlimits_0^1 S(y^2) dy&=& frac1pi intlimits_0^1 fracF_2,1[frac14,frac12,frac54,t^2]sqrtt(1-t)dt\
        &=&frac1pi intlimits_0^1 fracF[arcsin(sqrtt),-1]t sqrt1-t dt\
        &=&-frac1piintlimits_0^1 frac2log(1-sqrt1-t)-log(t)2sqrtt(1-t^2)dt\
        &=&-frac1pi left(2intlimits_0^1 fraclog(t)sqrtt(t-2)(t-1+sqrt2)(t-1-sqrt2)dt+pi^3/2 fracGamma(5/4)Gamma(3/4)right)\
        &=&-frac1pi left(
        2 sqrt2 intlimits_0^pi fraclog[sin(u/4)]sqrt3-cos(u)-
        frac2 sqrtpi Gamma(5/4) (pi+4 log(2))Gamma(-1/4)
        right)\
        &=&-frac1pi left(
        sqrt2 intlimits_0^pi fraclog[1-cos(u/2)]sqrt3-cos(u)du-
        frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
        right)\
        &=&
        -frac1pi left(
        sqrt2 intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du-
        frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
        right)
        endeqnarray
        In the first line above I expanded the square root in a series and integrated over $y$ term by term. In the second line above I went to Wolframs site http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/09/19/02/ and looked up the closed form for the particular hypergeometric function. Here $F[phi,m]$ is the elliptic function of the first kind. In the third line I integrated by parts once and finally in the forth line I integrated the second term by using appropriate Euler sums and in the first term we substituted for $1-sqrt1-t$.In the fifthe line I substituted for $t:=2 sin(u)^2$ and in the sixth line I simplified the result using trigonometric half-angle identities.



        The remaining integral can be actually simplified by expanding the integrand in a double series and then doing one of the sums. Here we just state the result:
        begineqnarray
        &&intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du =
        -fracpi2sumlimits_lambda=0^infty
        binom-1/2lambda (-frac12)^lambda cdot \
        &&
        left(frac1+lambda1+2lambda binom1/2+lambda-1/2(2 log(2)+H_lambda) + binomlambda-1/2 F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1] right)
        endeqnarray
        Now, the remaining hypergeometric functions $F_3,2$ can also be simplified and expressed through Catalan numbers. We lack time to complete the whole calculations and therefore we have to leave this apart for the time being and complete this later.



        Update: By using the following identity:
        beginequation
        frac(1+lambda)^(l)(3/2+lambda)^(l) = frac(3/2)^(lambda)1^(lambda) cdot frac1^(l)(3/2)^(l) cdot frac(l+1)^(lambda)(l+3/2)^(lambda)
        endequation
        and then by decomposing the last term on the righthand side into partial fractions in $l$ we easily get the following identity:
        begineqnarray
        &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
        frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C- sumlimits_j=1^lambda j binom-1/2+jlambda binomlambdaj (-1)^lambda-j cdot intlimits_0^1 theta^j-1/2 cdot F_3,2[beginarrayrrr frac12& 1&1\ frac32& frac32 & endarray;theta]dthetaright.\
        &&left.
        right)=\
        &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
        &&left.
        (-1)^lsumlimits_j=1^l j binom-1/2j binom-1/2l-j cdot right.\
        &&left.intlimits_0^pi/2 [sin(u)]^2j-1 2 cos(u)left( i textLi_2left(-e^i uright)-i textLi_2left(e^i uright)+u log left(frac1-e^i u1+e^i uright)right)duright.\
        &&left.
        right)=\
        &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
        &&left.
        (-1)^lsumlimits_j=1^lsumlimits_p=-j-1^j-1 j binom-1/2j binom-1/2l-j cdot frac(-1)^p+l2^2j-1[binom2j-1p+1 - binom2j-1p+j+1]cdotright.\
        &&left.intlimits_1^imath z^p+1 left(log(z) log(frac1-z1+z)+Li_2(z)-Li_2(-z)right)dzright.\
        &&left.
        right)=\
        &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C+right.\
        &&left.
        frac12
        sumlimits_j=0^l-1sumlimits_p=-l-1,pneq -1^l-1
        binom-3/2j binom-1/2l-1-j frac12^2j+1
        [binom2j+1p+j+1-binom2j+1p+j+2]cdotright.\
        &&left.
        frac(-1)^p+lp+1
        left((1+(-1)^p) cdot C - sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2right)right.\
        &&left.
        right)
        endeqnarray
        where in the second line we used the closed form expression from http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/08/05/02/01/07/0001/ and we changed the variables appropriately. In the third line we substituted for $z:=exp(imath u)$. In the fourth line we calculated the integrals using integration by parts and then simplified the result.



        In summary we have shown that :
        begineqnarray
        &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
        2 frac(1/2)^(lambda) (3/2)^(lambda)lambda! cdot lambda! cdot C + frac(3/2)^(lambda)lambda!cdot mathfrak A_lambda\
        &&intlimits_0^pi/2 fraclog(1-cos(u))sqrt1-1/2 cos(u)^2=fracsqrtfrac2pi Gamma left(frac14right) (4 C+pi log (2))Gamma left(-frac14right)-\
        && sumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)\
        &&intlimits_0^1 S(y^2) dy=-frac1pileft(right.\
        &&left.
        -frac2 Gamma left(frac54right) (pi (pi -2 log (4))-16 C)sqrtpi Gamma left(-frac14right)right.\
        &&left.
        -sqrt2cdotsumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)right.\
        &&left.
        right)
        endeqnarray
        where
        begineqnarray
        &&mathfrak A_lambda := \
        &&left(
        sumlimits_j=0^lambda-1 sumlimits_beginarrayr p=-lambda-1\pneq-1endarray^lambda-1
        binom-3/2j binom-1/2lambda-1-j frac[binom2j+1p+j+1 - binom2j+1p+j+2]2^2 j+2
        frac(-1)^p+lambda+1p+1cdot
        sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2
        right)
        endeqnarray
        Note : The remaining infinite sum converges quite quickly. Truncating the sum at the first one hundred terms produces a more than thirty digits accuracy. On the other hand the the series in question converges very slowly; one needs to take five thousand terms in order to get the first four decimal digits right.






        share|cite|improve this answer











        $endgroup$



        This is not going to be a full answer but I think I am able to contribute a little more compared to what has been presented above therefore I present my approach.
        Denote :
        beginequation
        S(y):= sumlimits_n=0^infty binom4 n2 n binom2 nn fracy^2 n64^n
        endequation
        We use the good old identity:
        beginequation
        binom2 nn=(-4)^n cdot binom-frac12n
        endequation
        and we get
        begineqnarray
        S(y)&=& sumlimits_n=0^infty binom-frac12n cdot underbracebinom-frac122n_frac1pi intlimits_0^1 t^-1/2 (1-t)^2 n-1/2 dt cdot (-y^2)^n\
        &=& frac1pi intlimits_0^1 frac1sqrtt(1-t)(1-y^2 t^2) dt
        &=&
        endeqnarray
        Now in the last equation above we replace $y$ by $y^2$ and integrate over $y$ from zero to unity. This gives:
        begineqnarray
        intlimits_0^1 S(y^2) dy&=& frac1pi intlimits_0^1 fracF_2,1[frac14,frac12,frac54,t^2]sqrtt(1-t)dt\
        &=&frac1pi intlimits_0^1 fracF[arcsin(sqrtt),-1]t sqrt1-t dt\
        &=&-frac1piintlimits_0^1 frac2log(1-sqrt1-t)-log(t)2sqrtt(1-t^2)dt\
        &=&-frac1pi left(2intlimits_0^1 fraclog(t)sqrtt(t-2)(t-1+sqrt2)(t-1-sqrt2)dt+pi^3/2 fracGamma(5/4)Gamma(3/4)right)\
        &=&-frac1pi left(
        2 sqrt2 intlimits_0^pi fraclog[sin(u/4)]sqrt3-cos(u)-
        frac2 sqrtpi Gamma(5/4) (pi+4 log(2))Gamma(-1/4)
        right)\
        &=&-frac1pi left(
        sqrt2 intlimits_0^pi fraclog[1-cos(u/2)]sqrt3-cos(u)du-
        frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
        right)\
        &=&
        -frac1pi left(
        sqrt2 intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du-
        frac2 pi^3/2 Gamma(5/4)Gamma(-1/4)
        right)
        endeqnarray
        In the first line above I expanded the square root in a series and integrated over $y$ term by term. In the second line above I went to Wolframs site http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/09/19/02/ and looked up the closed form for the particular hypergeometric function. Here $F[phi,m]$ is the elliptic function of the first kind. In the third line I integrated by parts once and finally in the forth line I integrated the second term by using appropriate Euler sums and in the first term we substituted for $1-sqrt1-t$.In the fifthe line I substituted for $t:=2 sin(u)^2$ and in the sixth line I simplified the result using trigonometric half-angle identities.



        The remaining integral can be actually simplified by expanding the integrand in a double series and then doing one of the sums. Here we just state the result:
        begineqnarray
        &&intlimits_0^pi/2 fraclog[1-cos(u)]sqrt1-1/2cos(u)^2du =
        -fracpi2sumlimits_lambda=0^infty
        binom-1/2lambda (-frac12)^lambda cdot \
        &&
        left(frac1+lambda1+2lambda binom1/2+lambda-1/2(2 log(2)+H_lambda) + binomlambda-1/2 F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1] right)
        endeqnarray
        Now, the remaining hypergeometric functions $F_3,2$ can also be simplified and expressed through Catalan numbers. We lack time to complete the whole calculations and therefore we have to leave this apart for the time being and complete this later.



        Update: By using the following identity:
        beginequation
        frac(1+lambda)^(l)(3/2+lambda)^(l) = frac(3/2)^(lambda)1^(lambda) cdot frac1^(l)(3/2)^(l) cdot frac(l+1)^(lambda)(l+3/2)^(lambda)
        endequation
        and then by decomposing the last term on the righthand side into partial fractions in $l$ we easily get the following identity:
        begineqnarray
        &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
        frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C- sumlimits_j=1^lambda j binom-1/2+jlambda binomlambdaj (-1)^lambda-j cdot intlimits_0^1 theta^j-1/2 cdot F_3,2[beginarrayrrr frac12& 1&1\ frac32& frac32 & endarray;theta]dthetaright.\
        &&left.
        right)=\
        &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
        &&left.
        (-1)^lsumlimits_j=1^l j binom-1/2j binom-1/2l-j cdot right.\
        &&left.intlimits_0^pi/2 [sin(u)]^2j-1 2 cos(u)left( i textLi_2left(-e^i uright)-i textLi_2left(e^i uright)+u log left(frac1-e^i u1+e^i uright)right)duright.\
        &&left.
        right)=\
        &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C-(1-frac(-1)^l sqrtpiGamma[1/2-l]l!) fracimath pi^24-right.\
        &&left.
        (-1)^lsumlimits_j=1^lsumlimits_p=-j-1^j-1 j binom-1/2j binom-1/2l-j cdot frac(-1)^p+l2^2j-1[binom2j-1p+1 - binom2j-1p+j+1]cdotright.\
        &&left.intlimits_1^imath z^p+1 left(log(z) log(frac1-z1+z)+Li_2(z)-Li_2(-z)right)dzright.\
        &&left.
        right)=\
        &&frac(3/2)^(lambda)1^(lambda) cdot left(right.\
        &&left.
        2 C+right.\
        &&left.
        frac12
        sumlimits_j=0^l-1sumlimits_p=-l-1,pneq -1^l-1
        binom-3/2j binom-1/2l-1-j frac12^2j+1
        [binom2j+1p+j+1-binom2j+1p+j+2]cdotright.\
        &&left.
        frac(-1)^p+lp+1
        left((1+(-1)^p) cdot C - sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2right)right.\
        &&left.
        right)
        endeqnarray
        where in the second line we used the closed form expression from http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/08/05/02/01/07/0001/ and we changed the variables appropriately. In the third line we substituted for $z:=exp(imath u)$. In the fourth line we calculated the integrals using integration by parts and then simplified the result.



        In summary we have shown that :
        begineqnarray
        &&F_3,2[beginarrayrrr frac12& 1&1+lambda\ frac32& frac32+lambda & endarray;1]=
        2 frac(1/2)^(lambda) (3/2)^(lambda)lambda! cdot lambda! cdot C + frac(3/2)^(lambda)lambda!cdot mathfrak A_lambda\
        &&intlimits_0^pi/2 fraclog(1-cos(u))sqrt1-1/2 cos(u)^2=fracsqrtfrac2pi Gamma left(frac14right) (4 C+pi log (2))Gamma left(-frac14right)-\
        && sumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)\
        &&intlimits_0^1 S(y^2) dy=-frac1pileft(right.\
        &&left.
        -frac2 Gamma left(frac54right) (pi (pi -2 log (4))-16 C)sqrtpi Gamma left(-frac14right)right.\
        &&left.
        -sqrt2cdotsumlimits_lambda=0^infty binom-1/2lambda (frac12)^lambda left( fracpi4 binom-1/2lambda H_lambda+(-1)^lambda mathfrak A_lambdaright)right.\
        &&left.
        right)
        endeqnarray
        where
        begineqnarray
        &&mathfrak A_lambda := \
        &&left(
        sumlimits_j=0^lambda-1 sumlimits_beginarrayr p=-lambda-1\pneq-1endarray^lambda-1
        binom-3/2j binom-1/2lambda-1-j frac[binom2j+1p+j+1 - binom2j+1p+j+2]2^2 j+2
        frac(-1)^p+lambda+1p+1cdot
        sumlimits_k=0^p cdot 1_pge 0-(p+2) 1_p<0 frac(-1)^k(2k+1)^2
        right)
        endeqnarray
        Note : The remaining infinite sum converges quite quickly. Truncating the sum at the first one hundred terms produces a more than thirty digits accuracy. On the other hand the the series in question converges very slowly; one needs to take five thousand terms in order to get the first four decimal digits right.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Sep 28 '17 at 18:09

























        answered Sep 21 '17 at 12:33









        PrzemoPrzemo

        4,39311031




        4,39311031



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2429957%2fa-tough-series-related-with-a-hypergeometric-function-with-quarter-integer-param%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye