How can I change step-down my variable input voltage?Lowering voltage linearRGB LED Strip - Variable Voltage Vs. PWMHow do I measure ~16V battery voltage in an ultra low power system?How do I amplify an input signal to match the peak of another signalDual power supply for Op AmpAdvice and critical remarks regarding the manufacturing of a DC-DC step-down converterBetter way to divide voltage for input to an ADC DAQ?Precision voltage dividerHow to calibrate Unipolar ADC in softwarePulling voltage on a “pull-up” input down to match voltage of voltage output from another device
Plot of a tornado-shaped surface
Does IPv6 have similar concept of network mask?
How can I write humor as character trait?
Quoting Keynes in a lecture
Creepy dinosaur pc game identification
Is this toilet slogan correct usage of the English language?
Extract more than nine arguments that occur periodically in a sentence to use in macros in order to typset
Can a Canadian Travel to the USA twice, less than 180 days each time?
How does the math work for Perception checks?
Why would a new[] expression ever invoke a destructor?
What exact color does ozone gas have?
Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?
How does a computer interpret real numbers?
How should I respond when I lied about my education and the company finds out through background check?
Does malloc reserve more space while allocating memory?
Do the primes contain an infinite almost arithmetic progression?
Mimic lecturing on blackboard, facing audience
Multiplicative persistence
Why Shazam when there is already Superman?
How do you make your own symbol when Detexify fails?
What happens if you are holding an Iron Flask with a demon inside and walk into an Antimagic Field?
What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?
What are the advantages of simplicial model categories over non-simplicial ones?
How much character growth crosses the line into breaking the character
How can I change step-down my variable input voltage?
Lowering voltage linearRGB LED Strip - Variable Voltage Vs. PWMHow do I measure ~16V battery voltage in an ultra low power system?How do I amplify an input signal to match the peak of another signalDual power supply for Op AmpAdvice and critical remarks regarding the manufacturing of a DC-DC step-down converterBetter way to divide voltage for input to an ADC DAQ?Precision voltage dividerHow to calibrate Unipolar ADC in softwarePulling voltage on a “pull-up” input down to match voltage of voltage output from another device
$begingroup$
Ok so here's the deal:
I have a variable DC Voltage source from 0-10V.
I need to step that down to a variable source of 0-3V.
This 0-3V DC will be fed to an Analog to Digital converter in a microcontroller.
I know I can potentially use a Voltage Divider (using resistors) but apparently, that's not a good solution.
Op-amps don't provide a gain < 1.
So I'm just struggling as to how I can accomplish this.
The microcontroller: https://www.microchip.com/wwwproducts/en/PIC18F47K42
microcontroller voltage power dc variable
$endgroup$
add a comment |
$begingroup$
Ok so here's the deal:
I have a variable DC Voltage source from 0-10V.
I need to step that down to a variable source of 0-3V.
This 0-3V DC will be fed to an Analog to Digital converter in a microcontroller.
I know I can potentially use a Voltage Divider (using resistors) but apparently, that's not a good solution.
Op-amps don't provide a gain < 1.
So I'm just struggling as to how I can accomplish this.
The microcontroller: https://www.microchip.com/wwwproducts/en/PIC18F47K42
microcontroller voltage power dc variable
$endgroup$
$begingroup$
How can you use a voltage of 0 to 3V as the supply voltage for a microcontroller? Your description of this doesn't make any sense. You should draw a schematic.
$endgroup$
– Elliot Alderson
Mar 14 at 22:04
$begingroup$
@ElliotAlderson you're right I'm sorry. It's not to power the microcontroller. The application is to simulate dimming, based on the 0-10V from the DC Source the voltage must be stepped down from 0-3V. This is the voltage range readable by the uC which will determine the duty cycle of a PWM used to dim an LED.
$endgroup$
– Alee321
Mar 14 at 22:10
2
$begingroup$
A resistive divider is fine then. You might want to put an op-amp voltage follower in between the divider and ADC input to buffer things but it's not always necessary. Search this site. There are many existing answers addressing your question.
$endgroup$
– Toor
Mar 14 at 22:12
3
$begingroup$
A voltage divider may be a perfectly good solution provided (a) the source impedance isn't too high and (b) you can tolerate the small energy consumption. Your question doesn't include details of either.
$endgroup$
– Transistor
Mar 14 at 22:12
add a comment |
$begingroup$
Ok so here's the deal:
I have a variable DC Voltage source from 0-10V.
I need to step that down to a variable source of 0-3V.
This 0-3V DC will be fed to an Analog to Digital converter in a microcontroller.
I know I can potentially use a Voltage Divider (using resistors) but apparently, that's not a good solution.
Op-amps don't provide a gain < 1.
So I'm just struggling as to how I can accomplish this.
The microcontroller: https://www.microchip.com/wwwproducts/en/PIC18F47K42
microcontroller voltage power dc variable
$endgroup$
Ok so here's the deal:
I have a variable DC Voltage source from 0-10V.
I need to step that down to a variable source of 0-3V.
This 0-3V DC will be fed to an Analog to Digital converter in a microcontroller.
I know I can potentially use a Voltage Divider (using resistors) but apparently, that's not a good solution.
Op-amps don't provide a gain < 1.
So I'm just struggling as to how I can accomplish this.
The microcontroller: https://www.microchip.com/wwwproducts/en/PIC18F47K42
microcontroller voltage power dc variable
microcontroller voltage power dc variable
edited Mar 15 at 12:45
pipe
10.2k42658
10.2k42658
asked Mar 14 at 22:00
Alee321Alee321
112
112
$begingroup$
How can you use a voltage of 0 to 3V as the supply voltage for a microcontroller? Your description of this doesn't make any sense. You should draw a schematic.
$endgroup$
– Elliot Alderson
Mar 14 at 22:04
$begingroup$
@ElliotAlderson you're right I'm sorry. It's not to power the microcontroller. The application is to simulate dimming, based on the 0-10V from the DC Source the voltage must be stepped down from 0-3V. This is the voltage range readable by the uC which will determine the duty cycle of a PWM used to dim an LED.
$endgroup$
– Alee321
Mar 14 at 22:10
2
$begingroup$
A resistive divider is fine then. You might want to put an op-amp voltage follower in between the divider and ADC input to buffer things but it's not always necessary. Search this site. There are many existing answers addressing your question.
$endgroup$
– Toor
Mar 14 at 22:12
3
$begingroup$
A voltage divider may be a perfectly good solution provided (a) the source impedance isn't too high and (b) you can tolerate the small energy consumption. Your question doesn't include details of either.
$endgroup$
– Transistor
Mar 14 at 22:12
add a comment |
$begingroup$
How can you use a voltage of 0 to 3V as the supply voltage for a microcontroller? Your description of this doesn't make any sense. You should draw a schematic.
$endgroup$
– Elliot Alderson
Mar 14 at 22:04
$begingroup$
@ElliotAlderson you're right I'm sorry. It's not to power the microcontroller. The application is to simulate dimming, based on the 0-10V from the DC Source the voltage must be stepped down from 0-3V. This is the voltage range readable by the uC which will determine the duty cycle of a PWM used to dim an LED.
$endgroup$
– Alee321
Mar 14 at 22:10
2
$begingroup$
A resistive divider is fine then. You might want to put an op-amp voltage follower in between the divider and ADC input to buffer things but it's not always necessary. Search this site. There are many existing answers addressing your question.
$endgroup$
– Toor
Mar 14 at 22:12
3
$begingroup$
A voltage divider may be a perfectly good solution provided (a) the source impedance isn't too high and (b) you can tolerate the small energy consumption. Your question doesn't include details of either.
$endgroup$
– Transistor
Mar 14 at 22:12
$begingroup$
How can you use a voltage of 0 to 3V as the supply voltage for a microcontroller? Your description of this doesn't make any sense. You should draw a schematic.
$endgroup$
– Elliot Alderson
Mar 14 at 22:04
$begingroup$
How can you use a voltage of 0 to 3V as the supply voltage for a microcontroller? Your description of this doesn't make any sense. You should draw a schematic.
$endgroup$
– Elliot Alderson
Mar 14 at 22:04
$begingroup$
@ElliotAlderson you're right I'm sorry. It's not to power the microcontroller. The application is to simulate dimming, based on the 0-10V from the DC Source the voltage must be stepped down from 0-3V. This is the voltage range readable by the uC which will determine the duty cycle of a PWM used to dim an LED.
$endgroup$
– Alee321
Mar 14 at 22:10
$begingroup$
@ElliotAlderson you're right I'm sorry. It's not to power the microcontroller. The application is to simulate dimming, based on the 0-10V from the DC Source the voltage must be stepped down from 0-3V. This is the voltage range readable by the uC which will determine the duty cycle of a PWM used to dim an LED.
$endgroup$
– Alee321
Mar 14 at 22:10
2
2
$begingroup$
A resistive divider is fine then. You might want to put an op-amp voltage follower in between the divider and ADC input to buffer things but it's not always necessary. Search this site. There are many existing answers addressing your question.
$endgroup$
– Toor
Mar 14 at 22:12
$begingroup$
A resistive divider is fine then. You might want to put an op-amp voltage follower in between the divider and ADC input to buffer things but it's not always necessary. Search this site. There are many existing answers addressing your question.
$endgroup$
– Toor
Mar 14 at 22:12
3
3
$begingroup$
A voltage divider may be a perfectly good solution provided (a) the source impedance isn't too high and (b) you can tolerate the small energy consumption. Your question doesn't include details of either.
$endgroup$
– Transistor
Mar 14 at 22:12
$begingroup$
A voltage divider may be a perfectly good solution provided (a) the source impedance isn't too high and (b) you can tolerate the small energy consumption. Your question doesn't include details of either.
$endgroup$
– Transistor
Mar 14 at 22:12
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
R divider works fine as long as R is not too high.
If you know the conversion rate and Hold Cap acquisition time
EQUATION 36-1: ACQUISITION TIME EXAMPLE in the datasheet provides the formula and example of choosing R values < 10k.
Rs is the source equivalent // resistance of the R divider, R1//R2.
$endgroup$
add a comment |
$begingroup$
A resistor divider works fine as long as the source impedance is low and the ADC impedance is high (compared to the resistors used for the divider).
If your source impedance is high, use an opamp in voltage follower mode (gain = 1) before the divider. If your ADC impedance is low (unlikely) use a voltage follower after the divider.
$endgroup$
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
add a comment |
$begingroup$
In addition to @Toor suggestion (voltage follower and voltage divider) and in response to OP statement
Op-amps don't provide a gain < 1.
follows my alternative configuration using a single supply difference amplifier. The output is reversed - if you do not mind correct it in software applying $V_o=3 - 0.3V_i$.
$endgroup$
1
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
);
);
, "mathjax-editing");
StackExchange.ifUsing("editor", function ()
return StackExchange.using("schematics", function ()
StackExchange.schematics.init();
);
, "cicuitlab");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "135"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427305%2fhow-can-i-change-step-down-my-variable-input-voltage%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
R divider works fine as long as R is not too high.
If you know the conversion rate and Hold Cap acquisition time
EQUATION 36-1: ACQUISITION TIME EXAMPLE in the datasheet provides the formula and example of choosing R values < 10k.
Rs is the source equivalent // resistance of the R divider, R1//R2.
$endgroup$
add a comment |
$begingroup$
R divider works fine as long as R is not too high.
If you know the conversion rate and Hold Cap acquisition time
EQUATION 36-1: ACQUISITION TIME EXAMPLE in the datasheet provides the formula and example of choosing R values < 10k.
Rs is the source equivalent // resistance of the R divider, R1//R2.
$endgroup$
add a comment |
$begingroup$
R divider works fine as long as R is not too high.
If you know the conversion rate and Hold Cap acquisition time
EQUATION 36-1: ACQUISITION TIME EXAMPLE in the datasheet provides the formula and example of choosing R values < 10k.
Rs is the source equivalent // resistance of the R divider, R1//R2.
$endgroup$
R divider works fine as long as R is not too high.
If you know the conversion rate and Hold Cap acquisition time
EQUATION 36-1: ACQUISITION TIME EXAMPLE in the datasheet provides the formula and example of choosing R values < 10k.
Rs is the source equivalent // resistance of the R divider, R1//R2.
answered Mar 14 at 22:55
Sunnyskyguy EE75Sunnyskyguy EE75
69.2k22598
69.2k22598
add a comment |
add a comment |
$begingroup$
A resistor divider works fine as long as the source impedance is low and the ADC impedance is high (compared to the resistors used for the divider).
If your source impedance is high, use an opamp in voltage follower mode (gain = 1) before the divider. If your ADC impedance is low (unlikely) use a voltage follower after the divider.
$endgroup$
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
add a comment |
$begingroup$
A resistor divider works fine as long as the source impedance is low and the ADC impedance is high (compared to the resistors used for the divider).
If your source impedance is high, use an opamp in voltage follower mode (gain = 1) before the divider. If your ADC impedance is low (unlikely) use a voltage follower after the divider.
$endgroup$
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
add a comment |
$begingroup$
A resistor divider works fine as long as the source impedance is low and the ADC impedance is high (compared to the resistors used for the divider).
If your source impedance is high, use an opamp in voltage follower mode (gain = 1) before the divider. If your ADC impedance is low (unlikely) use a voltage follower after the divider.
$endgroup$
A resistor divider works fine as long as the source impedance is low and the ADC impedance is high (compared to the resistors used for the divider).
If your source impedance is high, use an opamp in voltage follower mode (gain = 1) before the divider. If your ADC impedance is low (unlikely) use a voltage follower after the divider.
answered Mar 14 at 22:26
evildemonicevildemonic
2,478822
2,478822
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
add a comment |
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
$begingroup$
ADCs can have low input impedances, because those sample-and-hold circuits have a capacitor that needs to be charged! A tiny one, but it's still there. Too high a resistance can mean you need to sample for longer, slowing your reads, which may or may not be acceptable.
$endgroup$
– Hearth
Mar 14 at 23:33
add a comment |
$begingroup$
In addition to @Toor suggestion (voltage follower and voltage divider) and in response to OP statement
Op-amps don't provide a gain < 1.
follows my alternative configuration using a single supply difference amplifier. The output is reversed - if you do not mind correct it in software applying $V_o=3 - 0.3V_i$.
$endgroup$
1
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
add a comment |
$begingroup$
In addition to @Toor suggestion (voltage follower and voltage divider) and in response to OP statement
Op-amps don't provide a gain < 1.
follows my alternative configuration using a single supply difference amplifier. The output is reversed - if you do not mind correct it in software applying $V_o=3 - 0.3V_i$.
$endgroup$
1
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
add a comment |
$begingroup$
In addition to @Toor suggestion (voltage follower and voltage divider) and in response to OP statement
Op-amps don't provide a gain < 1.
follows my alternative configuration using a single supply difference amplifier. The output is reversed - if you do not mind correct it in software applying $V_o=3 - 0.3V_i$.
$endgroup$
In addition to @Toor suggestion (voltage follower and voltage divider) and in response to OP statement
Op-amps don't provide a gain < 1.
follows my alternative configuration using a single supply difference amplifier. The output is reversed - if you do not mind correct it in software applying $V_o=3 - 0.3V_i$.
answered Mar 14 at 23:50
Dirceu Rodrigues JrDirceu Rodrigues Jr
1,868612
1,868612
1
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
add a comment |
1
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
1
1
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
As opposed to my voltage follower suggestion, this one has better common-mode rejection at the expense of inverting the signal.
$endgroup$
– Toor
Mar 14 at 23:55
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
Are those resistor values correct? I think it's supposed to be more along the lines of 6.66K/3.33K, or 10K/5K or something like that.
$endgroup$
– Toor
Mar 14 at 23:59
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
$begingroup$
I think that it's correct. Try to apply superposition to inputs 10 V and Vi.
$endgroup$
– Dirceu Rodrigues Jr
Mar 15 at 0:18
add a comment |
Thanks for contributing an answer to Electrical Engineering Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427305%2fhow-can-i-change-step-down-my-variable-input-voltage%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
How can you use a voltage of 0 to 3V as the supply voltage for a microcontroller? Your description of this doesn't make any sense. You should draw a schematic.
$endgroup$
– Elliot Alderson
Mar 14 at 22:04
$begingroup$
@ElliotAlderson you're right I'm sorry. It's not to power the microcontroller. The application is to simulate dimming, based on the 0-10V from the DC Source the voltage must be stepped down from 0-3V. This is the voltage range readable by the uC which will determine the duty cycle of a PWM used to dim an LED.
$endgroup$
– Alee321
Mar 14 at 22:10
2
$begingroup$
A resistive divider is fine then. You might want to put an op-amp voltage follower in between the divider and ADC input to buffer things but it's not always necessary. Search this site. There are many existing answers addressing your question.
$endgroup$
– Toor
Mar 14 at 22:12
3
$begingroup$
A voltage divider may be a perfectly good solution provided (a) the source impedance isn't too high and (b) you can tolerate the small energy consumption. Your question doesn't include details of either.
$endgroup$
– Transistor
Mar 14 at 22:12