Distribution of Maximum Likelihood EstimatorMaximum likelihood of function of the mean on a restricted parameter spaceMaximum Likelihood Estimator (MLE)Maximum Likelihood Estimator of the exponential function parameter based on Order StatisticsFind maximum likelihood estimateMaximum Likelihood Estimation in case of some specific uniform distributionsMaximum likelihood estimate for a univariate gaussianFind the Maximum Likelihood Estimator given two pdfsMaximum Likelihood Estimate for a likelihood defined by partsVariance of distribution for maximum likelihood estimatorHow is $P(D;theta) = P(D|theta)$?

Why does the Sun have different day lengths, but not the gas giants?

Non-trope happy ending?

Extract more than nine arguments that occur periodically in a sentence to use in macros in order to typset

Can a College of Swords bard use a Blade Flourish option on an opportunity attack provoked by their own Dissonant Whispers spell?

How can "mimic phobia" be cured or prevented?

Using substitution ciphers to generate new alphabets in a novel

On a tidally locked planet, would time be quantized?

Is there a way to get `mathscr' with lower case letters in pdfLaTeX?

Is this toilet slogan correct usage of the English language?

Open a doc from terminal, but not by its name

Calculating total slots

What are the advantages of simplicial model categories over non-simplicial ones?

Can I still be respawned if I die by falling off the map?

Mixing PEX brands

Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?

Recommended PCB layout understanding - ADM2572 datasheet

Can the US President recognize Israel’s sovereignty over the Golan Heights for the USA or does that need an act of Congress?

Why should universal income be universal?

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Why can Carol Danvers change her suit colours in the first place?

Do the primes contain an infinite almost arithmetic progression?

How much character growth crosses the line into breaking the character

Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?

Why is the "ls" command showing permissions of files in a FAT32 partition?



Distribution of Maximum Likelihood Estimator


Maximum likelihood of function of the mean on a restricted parameter spaceMaximum Likelihood Estimator (MLE)Maximum Likelihood Estimator of the exponential function parameter based on Order StatisticsFind maximum likelihood estimateMaximum Likelihood Estimation in case of some specific uniform distributionsMaximum likelihood estimate for a univariate gaussianFind the Maximum Likelihood Estimator given two pdfsMaximum Likelihood Estimate for a likelihood defined by partsVariance of distribution for maximum likelihood estimatorHow is $P(D;theta) = P(D|theta)$?













1












$begingroup$


Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)



Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$



Then after taking sample of size n



$$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$



And we want to find $theta_max$ such that $L(theta)$ is maximized and $theta_max$ is our estimate (once a sample has actually been selected)



Since $theta_max$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$



where



$$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$



Taking the derivative with respect to $theta$



$$fracf'(x_1;theta)f(x_1;theta)+fracf'(x_2;theta)f(x_2;theta)...+fracf'(x_n;theta)f(x_n;theta)$$



$theta_max$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)



    Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$



    Then after taking sample of size n



    $$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$



    And we want to find $theta_max$ such that $L(theta)$ is maximized and $theta_max$ is our estimate (once a sample has actually been selected)



    Since $theta_max$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$



    where



    $$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$



    Taking the derivative with respect to $theta$



    $$fracf'(x_1;theta)f(x_1;theta)+fracf'(x_2;theta)f(x_2;theta)...+fracf'(x_n;theta)f(x_n;theta)$$



    $theta_max$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)



      Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$



      Then after taking sample of size n



      $$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$



      And we want to find $theta_max$ such that $L(theta)$ is maximized and $theta_max$ is our estimate (once a sample has actually been selected)



      Since $theta_max$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$



      where



      $$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$



      Taking the derivative with respect to $theta$



      $$fracf'(x_1;theta)f(x_1;theta)+fracf'(x_2;theta)f(x_2;theta)...+fracf'(x_n;theta)f(x_n;theta)$$



      $theta_max$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?










      share|cite|improve this question









      $endgroup$




      Why is the Maximum Likelihood Estimator Normally distributed? I can't figure out why it is true for large n in general. My attempt (for single parameter)



      Let $L(theta)$ be the maximum likelihood function for the distribution $f(x;theta)$



      Then after taking sample of size n



      $$L(theta)=f(x_1;theta)cdot f(x_2theta)...f(x_n;theta)$$



      And we want to find $theta_max$ such that $L(theta)$ is maximized and $theta_max$ is our estimate (once a sample has actually been selected)



      Since $theta_max$ maximizes $L(theta)$ it also maximizes $ln(L(theta))$



      where



      $$ln(L(theta))=ln(f(x_1;theta))+ln(f(x_2;theta))...+ln(f(x_n;theta))$$



      Taking the derivative with respect to $theta$



      $$fracf'(x_1;theta)f(x_1;theta)+fracf'(x_2;theta)f(x_2;theta)...+fracf'(x_n;theta)f(x_n;theta)$$



      $theta_max$ would be the solution of the above when set to 0 (after selecting values for all $x_1,x_2...x_n$) but why is it normally distributed and how do I show that it's true for large n?







      probability distributions normal-distribution estimation sampling






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 15 at 0:50









      Colin HicksColin Hicks

      1353




      1353




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          MLE requires $$fracpartial ln L(theta)partial theta = sum_i=1^n frac f'(x_i;theta)f(x_i;theta),$$
          where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac f'(x;theta)f(x;theta).$ Then $g(x_i;theta)_i=1^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
          $$sqrtn(barg_n(theta)-Eg(x_1;theta))=sqrtnbarg_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
          where $barg_n(theta)=frac1n sum_i=1^n g(x_i;theta).$ The ML estimator solves the equation
          $$barg_n(theta)=0.$$
          It follows that the ML estimator is given by
          $$hattheta=barg_n^-1(0).$$
          So long as the set of discontinuity points of $barg_n^-1(z)$, i.e. the set of all values of $z$ such that $barg_n^-1(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
            $endgroup$
            – Colin Hicks
            Mar 15 at 1:23











          • $begingroup$
            You're welcome :)
            $endgroup$
            – dlnB
            Mar 15 at 1:26










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "65"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397619%2fdistribution-of-maximum-likelihood-estimator%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          MLE requires $$fracpartial ln L(theta)partial theta = sum_i=1^n frac f'(x_i;theta)f(x_i;theta),$$
          where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac f'(x;theta)f(x;theta).$ Then $g(x_i;theta)_i=1^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
          $$sqrtn(barg_n(theta)-Eg(x_1;theta))=sqrtnbarg_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
          where $barg_n(theta)=frac1n sum_i=1^n g(x_i;theta).$ The ML estimator solves the equation
          $$barg_n(theta)=0.$$
          It follows that the ML estimator is given by
          $$hattheta=barg_n^-1(0).$$
          So long as the set of discontinuity points of $barg_n^-1(z)$, i.e. the set of all values of $z$ such that $barg_n^-1(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
            $endgroup$
            – Colin Hicks
            Mar 15 at 1:23











          • $begingroup$
            You're welcome :)
            $endgroup$
            – dlnB
            Mar 15 at 1:26















          4












          $begingroup$

          MLE requires $$fracpartial ln L(theta)partial theta = sum_i=1^n frac f'(x_i;theta)f(x_i;theta),$$
          where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac f'(x;theta)f(x;theta).$ Then $g(x_i;theta)_i=1^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
          $$sqrtn(barg_n(theta)-Eg(x_1;theta))=sqrtnbarg_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
          where $barg_n(theta)=frac1n sum_i=1^n g(x_i;theta).$ The ML estimator solves the equation
          $$barg_n(theta)=0.$$
          It follows that the ML estimator is given by
          $$hattheta=barg_n^-1(0).$$
          So long as the set of discontinuity points of $barg_n^-1(z)$, i.e. the set of all values of $z$ such that $barg_n^-1(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
            $endgroup$
            – Colin Hicks
            Mar 15 at 1:23











          • $begingroup$
            You're welcome :)
            $endgroup$
            – dlnB
            Mar 15 at 1:26













          4












          4








          4





          $begingroup$

          MLE requires $$fracpartial ln L(theta)partial theta = sum_i=1^n frac f'(x_i;theta)f(x_i;theta),$$
          where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac f'(x;theta)f(x;theta).$ Then $g(x_i;theta)_i=1^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
          $$sqrtn(barg_n(theta)-Eg(x_1;theta))=sqrtnbarg_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
          where $barg_n(theta)=frac1n sum_i=1^n g(x_i;theta).$ The ML estimator solves the equation
          $$barg_n(theta)=0.$$
          It follows that the ML estimator is given by
          $$hattheta=barg_n^-1(0).$$
          So long as the set of discontinuity points of $barg_n^-1(z)$, i.e. the set of all values of $z$ such that $barg_n^-1(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.






          share|cite|improve this answer











          $endgroup$



          MLE requires $$fracpartial ln L(theta)partial theta = sum_i=1^n frac f'(x_i;theta)f(x_i;theta),$$
          where $f'(x_i;theta)$ could denote a gradient (allowing for the multivariate case, but still sticking to your notation). Define a new function $g(x;theta)=frac f'(x;theta)f(x;theta).$ Then $g(x_i;theta)_i=1^n$ is a new iid sequence of random variables, with $Eg(x_1;theta)=0$. If $Eg(x_1;theta)g(x_1;theta)'<infty$, CLT implies,
          $$sqrtn(barg_n(theta)-Eg(x_1;theta))=sqrtnbarg_n(theta) rightarrow_D N(0,E(g(x;theta)g(x;theta)'),$$
          where $barg_n(theta)=frac1n sum_i=1^n g(x_i;theta).$ The ML estimator solves the equation
          $$barg_n(theta)=0.$$
          It follows that the ML estimator is given by
          $$hattheta=barg_n^-1(0).$$
          So long as the set of discontinuity points of $barg_n^-1(z)$, i.e. the set of all values of $z$ such that $barg_n^-1(z)$ is not continuous, occur with probability zero, the continuous mapping theorem gives us asymptotic normality of $theta$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 15 at 2:12

























          answered Mar 15 at 1:16









          dlnBdlnB

          87711




          87711











          • $begingroup$
            $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
            $endgroup$
            – Colin Hicks
            Mar 15 at 1:23











          • $begingroup$
            You're welcome :)
            $endgroup$
            – dlnB
            Mar 15 at 1:26
















          • $begingroup$
            $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
            $endgroup$
            – Colin Hicks
            Mar 15 at 1:23











          • $begingroup$
            You're welcome :)
            $endgroup$
            – dlnB
            Mar 15 at 1:26















          $begingroup$
          $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
          $endgroup$
          – Colin Hicks
          Mar 15 at 1:23





          $begingroup$
          $fracf'(x)f(x)$ is just another function of x so central limit theorem applies thank you for that
          $endgroup$
          – Colin Hicks
          Mar 15 at 1:23













          $begingroup$
          You're welcome :)
          $endgroup$
          – dlnB
          Mar 15 at 1:26




          $begingroup$
          You're welcome :)
          $endgroup$
          – dlnB
          Mar 15 at 1:26

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397619%2fdistribution-of-maximum-likelihood-estimator%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

          Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers