Finding $int_-pi /2^pi /2 fraclog (1 + b sin x)sin x,mathrm dx$ given $|b|<1$Proving elementary, $int_0^2pilog frac(1+sin x)^1+cos x1+cos x mathrmdx=0$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Finding $displaystyle int_1^infty fracsin^4(log x)x^2 log x mathrmdx$Evaluate $int_0^inftyfraclog^2 xe^x^2mathrmdx$.How do you solve $int_0^1int_e^x^efracdydxlogy$?Evaluate $int_-1^1fracsin(x)arcsin(x)}dx$Show that $intlimits_0^{fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$How to evaluate $int_-infty^inftyfracxarctanfrac1x log(1+x^2)1+x^2dx$Evaluate $int_-pi/4^pi/4fracxsin xmathrmdx$Calculate the integral: $int_0^1 |sin log x| ,mathrmdx$

Lowest total scrabble score

Mixing PEX brands

Store Credit Card Information in Password Manager?

Is this toilet slogan correct usage of the English language?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Limits and Infinite Integration by Parts

putting logo on same line but after title, latex

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Can I say "fingers" when referring to toes?

Unexpected behavior of the procedure `Area` on the object 'Polygon'

Open a doc from terminal, but not by its name

Using substitution ciphers to generate new alphabets in a novel

Can disgust be a key component of horror?

Can the US President recognize Israel’s sovereignty over the Golan Heights for the USA or does that need an act of Congress?

How can "mimic phobia" be cured or prevented?

Why does the Sun have different day lengths, but not the gas giants?

Non-trope happy ending?

Do the primes contain an infinite almost arithmetic progression?

Hero deduces identity of a killer

Are Captain Marvel's powers affected by Thanos' actions in Infinity War

What is going on with 'gets(stdin)' on the site coderbyte?

Biological Blimps: Propulsion

How should I respond when I lied about my education and the company finds out through background check?

Creepy dinosaur pc game identification



Finding $int_-pi /2^pi /2 fraclog (1 + b sin x)sin x,mathrm dx$ given $|b|


Proving elementary, $int_0^2pilog frac(1+sin x)^1+cos x1+cos x mathrmdx=0$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Finding $displaystyle int_1^infty fracsin^4(log x)x^2 log x mathrmdx$Evaluate $int_0^inftyfraclog^2 xe^x^2mathrmdx$.How do you solve $int_0^1int_e^x^efracdydxlogy$?Evaluate $int_-1^1fracsin(x)arcsin(x)}dx$Show that $intlimits_0^{fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$How to evaluate $int_-infty^inftyfracxarctanfrac1x log(1+x^2)1+x^2dx$Evaluate $int_-pi/4^pi/4fracxsin xmathrmdx$Calculate the integral: $int_0^1 |sin log x| ,mathrmdx$













3












$begingroup$



Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



I do not know how to proceed further. The answer is $pi arcsin b$.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$



    Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




    I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
    For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



    I do not know how to proceed further. The answer is $pi arcsin b$.










    share|cite|improve this question











    $endgroup$














      3












      3








      3


      1



      $begingroup$



      Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




      I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
      For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



      I do not know how to proceed further. The answer is $pi arcsin b$.










      share|cite|improve this question











      $endgroup$





      Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




      I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
      For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



      I do not know how to proceed further. The answer is $pi arcsin b$.







      definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 15 at 3:35









      Saad

      20.1k92352




      20.1k92352










      asked Mar 15 at 3:18









      CaptainQuestionCaptainQuestion

      1769




      1769




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148849%2ffinding-int-pi-2-pi-2-frac-log-1-b-sin-x-sin-x-mathrm-dx%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44















          7












          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44













          7












          7








          7





          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$



          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 15 at 3:40

























          answered Mar 15 at 3:35









          Mark ViolaMark Viola

          134k1278176




          134k1278176











          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44
















          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44















          $begingroup$
          are you allowed to differentiate inside the integral?? how did you get the first step
          $endgroup$
          – terrace
          Mar 15 at 3:43




          $begingroup$
          are you allowed to differentiate inside the integral?? how did you get the first step
          $endgroup$
          – terrace
          Mar 15 at 3:43




          1




          1




          $begingroup$
          @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
          $endgroup$
          – CaptainQuestion
          Mar 15 at 3:47




          $begingroup$
          @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
          $endgroup$
          – CaptainQuestion
          Mar 15 at 3:47












          $begingroup$
          @CaptainQuestion thank you for an interesting link, +1
          $endgroup$
          – Zubin Mukerjee
          Mar 15 at 3:49





          $begingroup$
          @CaptainQuestion thank you for an interesting link, +1
          $endgroup$
          – Zubin Mukerjee
          Mar 15 at 3:49













          $begingroup$
          @terrace Yes, differentiating under the integral is legitimate here.
          $endgroup$
          – Mark Viola
          Mar 15 at 4:12




          $begingroup$
          @terrace Yes, differentiating under the integral is legitimate here.
          $endgroup$
          – Mark Viola
          Mar 15 at 4:12












          $begingroup$
          Once again, the beautiful trick !
          $endgroup$
          – Claude Leibovici
          Mar 15 at 4:44




          $begingroup$
          Once again, the beautiful trick !
          $endgroup$
          – Claude Leibovici
          Mar 15 at 4:44

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148849%2ffinding-int-pi-2-pi-2-frac-log-1-b-sin-x-sin-x-mathrm-dx%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

          Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers