Finding $int_-pi /2^pi /2 fraclog (1 + b sin x)sin x,mathrm dx$ given $|b|<1$Proving elementary, $int_0^2pilog frac(1+sin x)^1+cos x1+cos x mathrmdx=0$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Finding $displaystyle int_1^infty fracsin^4(log x)x^2 log x mathrmdx$Evaluate $int_0^inftyfraclog^2 xe^x^2mathrmdx$.How do you solve $int_0^1int_e^x^efracdydxlogy$?Evaluate $int_-1^1fracsin(x)arcsin(x)}dx$Show that $intlimits_0^{fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$How to evaluate $int_-infty^inftyfracxarctanfrac1x log(1+x^2)1+x^2dx$Evaluate $int_-pi/4^pi/4fracxsin xmathrmdx$Calculate the integral: $int_0^1 |sin log x| ,mathrmdx$
Lowest total scrabble score
Mixing PEX brands
Store Credit Card Information in Password Manager?
Is this toilet slogan correct usage of the English language?
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
Limits and Infinite Integration by Parts
putting logo on same line but after title, latex
What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?
Can I say "fingers" when referring to toes?
Unexpected behavior of the procedure `Area` on the object 'Polygon'
Open a doc from terminal, but not by its name
Using substitution ciphers to generate new alphabets in a novel
Can disgust be a key component of horror?
Can the US President recognize Israel’s sovereignty over the Golan Heights for the USA or does that need an act of Congress?
How can "mimic phobia" be cured or prevented?
Why does the Sun have different day lengths, but not the gas giants?
Non-trope happy ending?
Do the primes contain an infinite almost arithmetic progression?
Hero deduces identity of a killer
Are Captain Marvel's powers affected by Thanos' actions in Infinity War
What is going on with 'gets(stdin)' on the site coderbyte?
Biological Blimps: Propulsion
How should I respond when I lied about my education and the company finds out through background check?
Creepy dinosaur pc game identification
Finding $int_-pi /2^pi /2 fraclog (1 + b sin x)sin x,mathrm dx$ given $|b|
Proving elementary, $int_0^2pilog frac(1+sin x)^1+cos x1+cos x mathrmdx=0$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Finding $displaystyle int_1^infty fracsin^4(log x)x^2 log x mathrmdx$Evaluate $int_0^inftyfraclog^2 xe^x^2mathrmdx$.How do you solve $int_0^1int_e^x^efracdydxlogy$?Evaluate $int_-1^1fracsin(x)arcsin(x)}dx$Show that $intlimits_0^{fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$How to evaluate $int_-infty^inftyfracxarctanfrac1x log(1+x^2)1+x^2dx$Evaluate $int_-pi/4^pi/4fracxsin xmathrmdx$Calculate the integral: $int_0^1 |sin log x| ,mathrmdx$
$begingroup$
Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.
I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$
I do not know how to proceed further. The answer is $pi arcsin b$.
definite-integrals
$endgroup$
add a comment |
$begingroup$
Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.
I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$
I do not know how to proceed further. The answer is $pi arcsin b$.
definite-integrals
$endgroup$
add a comment |
$begingroup$
Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.
I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$
I do not know how to proceed further. The answer is $pi arcsin b$.
definite-integrals
$endgroup$
Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.
I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$
I do not know how to proceed further. The answer is $pi arcsin b$.
definite-integrals
definite-integrals
edited Mar 15 at 3:35
Saad
20.1k92352
20.1k92352
asked Mar 15 at 3:18
CaptainQuestionCaptainQuestion
1769
1769
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals
$$beginalign
I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
&=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
&=fracpisqrt1-b^2tag1
endalign$$
Using $I(0)=0$ and integrating $(1)$ yields
$$I(b)=piarcsin(b)$$
$endgroup$
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
1
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148849%2ffinding-int-pi-2-pi-2-frac-log-1-b-sin-x-sin-x-mathrm-dx%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals
$$beginalign
I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
&=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
&=fracpisqrt1-b^2tag1
endalign$$
Using $I(0)=0$ and integrating $(1)$ yields
$$I(b)=piarcsin(b)$$
$endgroup$
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
1
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
|
show 1 more comment
$begingroup$
Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals
$$beginalign
I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
&=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
&=fracpisqrt1-b^2tag1
endalign$$
Using $I(0)=0$ and integrating $(1)$ yields
$$I(b)=piarcsin(b)$$
$endgroup$
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
1
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
|
show 1 more comment
$begingroup$
Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals
$$beginalign
I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
&=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
&=fracpisqrt1-b^2tag1
endalign$$
Using $I(0)=0$ and integrating $(1)$ yields
$$I(b)=piarcsin(b)$$
$endgroup$
Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals
$$beginalign
I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
&=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
&=fracpisqrt1-b^2tag1
endalign$$
Using $I(0)=0$ and integrating $(1)$ yields
$$I(b)=piarcsin(b)$$
edited Mar 15 at 3:40
answered Mar 15 at 3:35
Mark ViolaMark Viola
134k1278176
134k1278176
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
1
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
|
show 1 more comment
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
1
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
$begingroup$
are you allowed to differentiate inside the integral?? how did you get the first step
$endgroup$
– terrace
Mar 15 at 3:43
1
1
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@terrace en.wikipedia.org/wiki/Leibniz_integral_rule
$endgroup$
– CaptainQuestion
Mar 15 at 3:47
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@CaptainQuestion thank you for an interesting link, +1
$endgroup$
– Zubin Mukerjee
Mar 15 at 3:49
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
@terrace Yes, differentiating under the integral is legitimate here.
$endgroup$
– Mark Viola
Mar 15 at 4:12
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
$begingroup$
Once again, the beautiful trick !
$endgroup$
– Claude Leibovici
Mar 15 at 4:44
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148849%2ffinding-int-pi-2-pi-2-frac-log-1-b-sin-x-sin-x-mathrm-dx%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown