Finding $int_-pi /2^pi /2 fraclog (1 + b sin x)sin x,mathrm dx$ given $|b|<1$Proving elementary, $int_0^2pilog frac(1+sin x)^1+cos x1+cos x mathrmdx=0$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Finding $displaystyle int_1^infty fracsin^4(log x)x^2 log x mathrmdx$Evaluate $int_0^inftyfraclog^2 xe^x^2mathrmdx$.How do you solve $int_0^1int_e^x^efracdydxlogy$?Evaluate $int_-1^1fracsin(x)arcsin(x)}dx$Show that $intlimits_0^{fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$How to evaluate $int_-infty^inftyfracxarctanfrac1x log(1+x^2)1+x^2dx$Evaluate $int_-pi/4^pi/4fracxsin xmathrmdx$Calculate the integral: $int_0^1 |sin log x| ,mathrmdx$

Lowest total scrabble score

Mixing PEX brands

Store Credit Card Information in Password Manager?

Is this toilet slogan correct usage of the English language?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Limits and Infinite Integration by Parts

putting logo on same line but after title, latex

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Can I say "fingers" when referring to toes?

Unexpected behavior of the procedure `Area` on the object 'Polygon'

Open a doc from terminal, but not by its name

Using substitution ciphers to generate new alphabets in a novel

Can disgust be a key component of horror?

Can the US President recognize Israel’s sovereignty over the Golan Heights for the USA or does that need an act of Congress?

How can "mimic phobia" be cured or prevented?

Why does the Sun have different day lengths, but not the gas giants?

Non-trope happy ending?

Do the primes contain an infinite almost arithmetic progression?

Hero deduces identity of a killer

Are Captain Marvel's powers affected by Thanos' actions in Infinity War

What is going on with 'gets(stdin)' on the site coderbyte?

Biological Blimps: Propulsion

How should I respond when I lied about my education and the company finds out through background check?

Creepy dinosaur pc game identification



Finding $int_-pi /2^pi /2 fraclog (1 + b sin x)sin x,mathrm dx$ given $|b|


Proving elementary, $int_0^2pilog frac(1+sin x)^1+cos x1+cos x mathrmdx=0$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Finding $displaystyle int_1^infty fracsin^4(log x)x^2 log x mathrmdx$Evaluate $int_0^inftyfraclog^2 xe^x^2mathrmdx$.How do you solve $int_0^1int_e^x^efracdydxlogy$?Evaluate $int_-1^1fracsin(x)arcsin(x)}dx$Show that $intlimits_0^{fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$How to evaluate $int_-infty^inftyfracxarctanfrac1x log(1+x^2)1+x^2dx$Evaluate $int_-pi/4^pi/4fracxsin xmathrmdx$Calculate the integral: $int_0^1 |sin log x| ,mathrmdx$













3












$begingroup$



Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



I do not know how to proceed further. The answer is $pi arcsin b$.










share|cite|improve this question











$endgroup$
















    3












    $begingroup$



    Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




    I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
    For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



    I do not know how to proceed further. The answer is $pi arcsin b$.










    share|cite|improve this question











    $endgroup$














      3












      3








      3


      1



      $begingroup$



      Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




      I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
      For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



      I do not know how to proceed further. The answer is $pi arcsin b$.










      share|cite|improve this question











      $endgroup$





      Find $$int_-pi/2^pi/2fraclog(1+bsin x)sin x,mathrm dx$$given that $|b|<1$.




      I split the integral into$$I=int_0^pi/2f(x),mathrm dx+int_-pi/2^0f(x),mathrm dx$$
      For the second term made the substitution $x =-t$ and further solved $I$ to get$$I=int_0 ^pi / 2 fraclog frac1 + b sin x1- b sin xsin x,mathrm dx$$



      I do not know how to proceed further. The answer is $pi arcsin b$.







      definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 15 at 3:35









      Saad

      20.1k92352




      20.1k92352










      asked Mar 15 at 3:18









      CaptainQuestionCaptainQuestion

      1769




      1769




















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148849%2ffinding-int-pi-2-pi-2-frac-log-1-b-sin-x-sin-x-mathrm-dx%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44















          7












          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44













          7












          7








          7





          $begingroup$

          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$






          share|cite|improve this answer











          $endgroup$



          Let $I(b)=int_-pi/2^pi/2fraclog(1+bsin(x))sin(x),dx$. Differentiating reveals



          $$beginalign
          I'(b)&=int_-pi/2^pi/2 frac11+bsin(x),dx\\
          &=2left(fracarctanleft(sqrtfrac1+b1-bright)+arctanleft(sqrtfrac1-b1+bright)sqrt1-b^2right)\\
          &=fracpisqrt1-b^2tag1
          endalign$$



          Using $I(0)=0$ and integrating $(1)$ yields



          $$I(b)=piarcsin(b)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 15 at 3:40

























          answered Mar 15 at 3:35









          Mark ViolaMark Viola

          134k1278176




          134k1278176











          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44
















          • $begingroup$
            are you allowed to differentiate inside the integral?? how did you get the first step
            $endgroup$
            – terrace
            Mar 15 at 3:43






          • 1




            $begingroup$
            @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
            $endgroup$
            – CaptainQuestion
            Mar 15 at 3:47










          • $begingroup$
            @CaptainQuestion thank you for an interesting link, +1
            $endgroup$
            – Zubin Mukerjee
            Mar 15 at 3:49











          • $begingroup$
            @terrace Yes, differentiating under the integral is legitimate here.
            $endgroup$
            – Mark Viola
            Mar 15 at 4:12










          • $begingroup$
            Once again, the beautiful trick !
            $endgroup$
            – Claude Leibovici
            Mar 15 at 4:44















          $begingroup$
          are you allowed to differentiate inside the integral?? how did you get the first step
          $endgroup$
          – terrace
          Mar 15 at 3:43




          $begingroup$
          are you allowed to differentiate inside the integral?? how did you get the first step
          $endgroup$
          – terrace
          Mar 15 at 3:43




          1




          1




          $begingroup$
          @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
          $endgroup$
          – CaptainQuestion
          Mar 15 at 3:47




          $begingroup$
          @terrace en.wikipedia.org/wiki/Leibniz_integral_rule
          $endgroup$
          – CaptainQuestion
          Mar 15 at 3:47












          $begingroup$
          @CaptainQuestion thank you for an interesting link, +1
          $endgroup$
          – Zubin Mukerjee
          Mar 15 at 3:49





          $begingroup$
          @CaptainQuestion thank you for an interesting link, +1
          $endgroup$
          – Zubin Mukerjee
          Mar 15 at 3:49













          $begingroup$
          @terrace Yes, differentiating under the integral is legitimate here.
          $endgroup$
          – Mark Viola
          Mar 15 at 4:12




          $begingroup$
          @terrace Yes, differentiating under the integral is legitimate here.
          $endgroup$
          – Mark Viola
          Mar 15 at 4:12












          $begingroup$
          Once again, the beautiful trick !
          $endgroup$
          – Claude Leibovici
          Mar 15 at 4:44




          $begingroup$
          Once again, the beautiful trick !
          $endgroup$
          – Claude Leibovici
          Mar 15 at 4:44

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148849%2ffinding-int-pi-2-pi-2-frac-log-1-b-sin-x-sin-x-mathrm-dx%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

          random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

          Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye