$(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ have the same limit.Two convergent sequences in a metric space.Correctness of Analysis argument with Cauchy sequencesProve $aX_n +bY_n$ is a Cauchy Sequence.If $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyProve that if $x_n$ is Cauchy, eventually positive and its limit isn't $0$ there's a $delta > 0$ such that $x_n - delta$ is eventually positive.My Proof: Every convergent sequence is a Cauchy sequence.$x_n to x in mathbbR$ and $y_n to 0 $. What about $fracx_ny_n$?Show that in $mathbbR^n$, sum of two Cauchy sequences is Cauchy.Prove that $preccurlyeq$ is a linear ordering over the set of all equivalence classes of Cauchy sequences of rationals
What is going on with 'gets(stdin)' on the site coderbyte?
Quoting Keynes in a lecture
Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?
How does a computer interpret real numbers?
Terse Method to Swap Lowest for Highest?
Why is the "ls" command showing permissions of files in a FAT32 partition?
putting logo on same line but after title, latex
Has any country ever had 2 former presidents in jail simultaneously?
Yosemite Fire Rings - What to Expect?
Extract more than nine arguments that occur periodically in a sentence to use in macros in order to typset
What are the advantages of simplicial model categories over non-simplicial ones?
Open a doc from terminal, but not by its name
Angel of Condemnation - Exile creature with second ability
Why "had" in "[something] we would have made had we used [something]"?
What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?
Biological Blimps: Propulsion
15% tax on $7.5k earnings. Is that right?
How to fade a semiplane defined by line?
How can "mimic phobia" be cured or prevented?
Can disgust be a key component of horror?
Does the Linux kernel need a file system to run?
Creepy dinosaur pc game identification
Does Doodling or Improvising on the Piano Have Any Benefits?
Is aluminum electrical wire used on aircraft?
$(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ have the same limit.
Two convergent sequences in a metric space.Correctness of Analysis argument with Cauchy sequencesProve $aX_n +bY_n$ is a Cauchy Sequence.If $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyProve that if $x_n$ is Cauchy, eventually positive and its limit isn't $0$ there's a $delta > 0$ such that $x_n - delta$ is eventually positive.My Proof: Every convergent sequence is a Cauchy sequence.$x_n to x in mathbbR$ and $y_n to 0 $. What about $fracx_ny_n$?Show that in $mathbbR^n$, sum of two Cauchy sequences is Cauchy.Prove that $preccurlyeq$ is a linear ordering over the set of all equivalence classes of Cauchy sequences of rationals
$begingroup$
Assume that $f: mathbbR -0to mathbbR$ is uniformly continuous.
Assume $(x_n)_ninmathbbNin(mathbbR-0)^mathbbN$ and $(y_n)_ninmathbbNin(mathbbR-0)^mathbbN$ are both sequences that converge to zero. Show that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ have the same limit.
To start, I proved that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ are Cauchy sequences (which converge). But I'm not sure how to proceed. Heuristically, I want to show that the distance between $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ is very small.
My attempt:
Since $f$ is uniformly continuous, then for all $epsilon>0$ there exists $delta>0$ such that if $|x-y|<delta_epsilon$ then $|f(x)-f(y)|<epsilon.$
Let's say for all $eta>0$, if $n>N_1$ then $|x_n|<eta$ and if $n>N_2$ then $|y_n|<eta$.
Pick $N=max(N_1,N_2)$ such that when $n>N$ one has $$|x_n-y_n|leq |x_n|+|y_n|<eta/2+eta/2=eta.$$
But how do I make the leap to concluding something about $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$?
real-analysis cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Assume that $f: mathbbR -0to mathbbR$ is uniformly continuous.
Assume $(x_n)_ninmathbbNin(mathbbR-0)^mathbbN$ and $(y_n)_ninmathbbNin(mathbbR-0)^mathbbN$ are both sequences that converge to zero. Show that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ have the same limit.
To start, I proved that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ are Cauchy sequences (which converge). But I'm not sure how to proceed. Heuristically, I want to show that the distance between $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ is very small.
My attempt:
Since $f$ is uniformly continuous, then for all $epsilon>0$ there exists $delta>0$ such that if $|x-y|<delta_epsilon$ then $|f(x)-f(y)|<epsilon.$
Let's say for all $eta>0$, if $n>N_1$ then $|x_n|<eta$ and if $n>N_2$ then $|y_n|<eta$.
Pick $N=max(N_1,N_2)$ such that when $n>N$ one has $$|x_n-y_n|leq |x_n|+|y_n|<eta/2+eta/2=eta.$$
But how do I make the leap to concluding something about $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$?
real-analysis cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Assume that $f: mathbbR -0to mathbbR$ is uniformly continuous.
Assume $(x_n)_ninmathbbNin(mathbbR-0)^mathbbN$ and $(y_n)_ninmathbbNin(mathbbR-0)^mathbbN$ are both sequences that converge to zero. Show that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ have the same limit.
To start, I proved that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ are Cauchy sequences (which converge). But I'm not sure how to proceed. Heuristically, I want to show that the distance between $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ is very small.
My attempt:
Since $f$ is uniformly continuous, then for all $epsilon>0$ there exists $delta>0$ such that if $|x-y|<delta_epsilon$ then $|f(x)-f(y)|<epsilon.$
Let's say for all $eta>0$, if $n>N_1$ then $|x_n|<eta$ and if $n>N_2$ then $|y_n|<eta$.
Pick $N=max(N_1,N_2)$ such that when $n>N$ one has $$|x_n-y_n|leq |x_n|+|y_n|<eta/2+eta/2=eta.$$
But how do I make the leap to concluding something about $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$?
real-analysis cauchy-sequences
$endgroup$
Assume that $f: mathbbR -0to mathbbR$ is uniformly continuous.
Assume $(x_n)_ninmathbbNin(mathbbR-0)^mathbbN$ and $(y_n)_ninmathbbNin(mathbbR-0)^mathbbN$ are both sequences that converge to zero. Show that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ have the same limit.
To start, I proved that $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ are Cauchy sequences (which converge). But I'm not sure how to proceed. Heuristically, I want to show that the distance between $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$ is very small.
My attempt:
Since $f$ is uniformly continuous, then for all $epsilon>0$ there exists $delta>0$ such that if $|x-y|<delta_epsilon$ then $|f(x)-f(y)|<epsilon.$
Let's say for all $eta>0$, if $n>N_1$ then $|x_n|<eta$ and if $n>N_2$ then $|y_n|<eta$.
Pick $N=max(N_1,N_2)$ such that when $n>N$ one has $$|x_n-y_n|leq |x_n|+|y_n|<eta/2+eta/2=eta.$$
But how do I make the leap to concluding something about $(f(x))_ninmathbbN$ and $(f(y))_ninmathbbN$?
real-analysis cauchy-sequences
real-analysis cauchy-sequences
edited Mar 15 at 3:18
Math Enthusiast
asked Mar 15 at 3:06
Math Enthusiast Math Enthusiast
555
555
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your $eta$ is arbitrary. Choose it such that $eta = eta_epsilon < delta_epsilon$.
Then by the uniform continuity $|f(x_n)-f(y_n)|<epsilon$, for all $n>N$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148843%2ffx-n-in-mathbbn-and-fy-n-in-mathbbn-have-the-same-limit%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your $eta$ is arbitrary. Choose it such that $eta = eta_epsilon < delta_epsilon$.
Then by the uniform continuity $|f(x_n)-f(y_n)|<epsilon$, for all $n>N$.
$endgroup$
add a comment |
$begingroup$
Your $eta$ is arbitrary. Choose it such that $eta = eta_epsilon < delta_epsilon$.
Then by the uniform continuity $|f(x_n)-f(y_n)|<epsilon$, for all $n>N$.
$endgroup$
add a comment |
$begingroup$
Your $eta$ is arbitrary. Choose it such that $eta = eta_epsilon < delta_epsilon$.
Then by the uniform continuity $|f(x_n)-f(y_n)|<epsilon$, for all $n>N$.
$endgroup$
Your $eta$ is arbitrary. Choose it such that $eta = eta_epsilon < delta_epsilon$.
Then by the uniform continuity $|f(x_n)-f(y_n)|<epsilon$, for all $n>N$.
answered Mar 15 at 3:29
user647486user647486
44918
44918
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148843%2ffx-n-in-mathbbn-and-fy-n-in-mathbbn-have-the-same-limit%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown