Show $frac2pi mathrmexp(-z^2) int_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can I evaluate $int_-infty^inftyfrace^-x^2(2x^2-1)1+x^2dx$?Integration involving rational function and exponentialsIntegrating a product of exponential and complementary error function with square-root of variable in the denominatorRepeated Indefinite Integration of Gaussian IntegralEvaluating $int_1^inftyx: texterfc(a+b log (x)) , dx$Prove $intlimits_0^infty mathrmexp(-ax^2-fracbx^2) mathrmd x = frac12sqrtfracpiamathrme^-2sqrtab$Prove $int_0^1 fracsin^-1(x)x dx = fracpi2ln2$Integrate $int_-infty^infty rm erfc left( fracxsqrt2 right) e^-frac(x-mu)^22 sigma^2 dx$Any simple way for proving $int_0^infty mathrmerf(x)erfc(x), dx = fracsqrt 2-1sqrtpi$?Integral of $exp[texterfc[C x]]$Calculating improper integral $int limits_0^inftyfracmathrme^-xsqrtx,mathrmdx$closed-form solution to $int_0^infty x^aexp(-bx)left(frac1texterfc(csqrtx)right)^2a$

Can a non-EU citizen traveling with me come with me through the EU passport line?

When is phishing education going too far?

Autumning in love

How do I automatically answer y in bash script?

Can I add database to AWS RDS MySQL without creating new instance?

What to do with post with dry rot?

If A makes B more likely then B makes A more likely"

How should I respond to a player wanting to catch a sword between their hands?

How do I keep my slimes from escaping their pens?

Unable to start mainnet node docker container

Stars Make Stars

Complexity of many constant time steps with occasional logarithmic steps

What is the largest species of polychaete?

What is the order of Mitzvot in Rambam's Sefer Hamitzvot?

Is 1 ppb equal to 1 μg/kg?

Do working physicists consider Newtonian mechanics to be "falsified"?

If I can make up priors, why can't I make up posteriors?

Did the new image of black hole confirm the general theory of relativity?

Classification of bundles, Postnikov towers, obstruction theory, local coefficients

Estimate capacitor parameters

What is the electric potential inside a point charge?

New Order #5: where Fibonacci and Beatty meet at Wythoff

3 doors, three guards, one stone

How many things? AとBがふたつ



Show $frac2pi mathrmexp(-z^2) int_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can I evaluate $int_-infty^inftyfrace^-x^2(2x^2-1)1+x^2dx$?Integration involving rational function and exponentialsIntegrating a product of exponential and complementary error function with square-root of variable in the denominatorRepeated Indefinite Integration of Gaussian IntegralEvaluating $int_1^inftyx: texterfc(a+b log (x)) , dx$Prove $intlimits_0^infty mathrmexp(-ax^2-fracbx^2) mathrmd x = frac12sqrtfracpiamathrme^-2sqrtab$Prove $int_0^1 fracsin^-1(x)x dx = fracpi2ln2$Integrate $int_-infty^infty rm erfc left( fracxsqrt2 right) e^-frac(x-mu)^22 sigma^2 dx$Any simple way for proving $int_0^infty mathrmerf(x)erfc(x), dx = fracsqrt 2-1sqrtpi$?Integral of $exp[texterfc[C x]]$Calculating improper integral $int limits_0^inftyfracmathrme^-xsqrtx,mathrmdx$closed-form solution to $int_0^infty x^aexp(-bx)left(frac1texterfc(csqrtx)right)^2a$










3












$begingroup$


I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.



For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes



beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign










share|cite|improve this question











$endgroup$











  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47
















3












$begingroup$


I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.



For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes



beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign










share|cite|improve this question











$endgroup$











  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47














3












3








3


1



$begingroup$


I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.



For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes



beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign










share|cite|improve this question











$endgroup$




I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.



For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes



beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign







integration definite-integrals special-functions error-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 13 '17 at 12:20









Community

1




1










asked Oct 17 '16 at 22:02









poweierstrasspoweierstrass

1,765515




1,765515











  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47

















  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47
















$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47





$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47











3 Answers
3






active

oldest

votes


















1












$begingroup$

With the substitution $x=fractz$, the integral on the left becomes



$$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
and we may switch to Fourier transforms. Since
$$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
$I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.




An interesting consequence is the following (tight) approximation for the $texterfc$ function:



$$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
    $endgroup$
    – user243301
    Oct 18 '16 at 14:37











  • $begingroup$
    Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 0:00


















4












$begingroup$

Assuming $z>0$,



$$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$




$(1)$ Tonelli's theorem



$(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$



$(3)$ Let $u = z^2+t$.



$(4)$ Let $w=sqrtu$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Excellent. Your initial substitution is exactly what I was seeking.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 10:49


















1












$begingroup$

begineqnarray
&&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
&&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
&&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
&&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
&&fracpi2 erfc(z) e^z^2
endeqnarray

where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    With the substitution $x=fractz$, the integral on the left becomes



    $$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
    and we may switch to Fourier transforms. Since
    $$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
    $I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
    We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.




    An interesting consequence is the following (tight) approximation for the $texterfc$ function:



    $$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37











    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00















    1












    $begingroup$

    With the substitution $x=fractz$, the integral on the left becomes



    $$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
    and we may switch to Fourier transforms. Since
    $$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
    $I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
    We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.




    An interesting consequence is the following (tight) approximation for the $texterfc$ function:



    $$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37











    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00













    1












    1








    1





    $begingroup$

    With the substitution $x=fractz$, the integral on the left becomes



    $$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
    and we may switch to Fourier transforms. Since
    $$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
    $I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
    We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.




    An interesting consequence is the following (tight) approximation for the $texterfc$ function:



    $$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$






    share|cite|improve this answer











    $endgroup$



    With the substitution $x=fractz$, the integral on the left becomes



    $$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
    and we may switch to Fourier transforms. Since
    $$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
    $I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
    We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.




    An interesting consequence is the following (tight) approximation for the $texterfc$ function:



    $$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Oct 17 '16 at 23:27

























    answered Oct 17 '16 at 22:35









    Jack D'AurizioJack D'Aurizio

    292k33284673




    292k33284673







    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37











    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00












    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37











    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00







    1




    1




    $begingroup$
    You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
    $endgroup$
    – user243301
    Oct 18 '16 at 14:37





    $begingroup$
    You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
    $endgroup$
    – user243301
    Oct 18 '16 at 14:37













    $begingroup$
    Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 0:00




    $begingroup$
    Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 0:00











    4












    $begingroup$

    Assuming $z>0$,



    $$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$




    $(1)$ Tonelli's theorem



    $(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$



    $(3)$ Let $u = z^2+t$.



    $(4)$ Let $w=sqrtu$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49















    4












    $begingroup$

    Assuming $z>0$,



    $$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$




    $(1)$ Tonelli's theorem



    $(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$



    $(3)$ Let $u = z^2+t$.



    $(4)$ Let $w=sqrtu$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49













    4












    4








    4





    $begingroup$

    Assuming $z>0$,



    $$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$




    $(1)$ Tonelli's theorem



    $(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$



    $(3)$ Let $u = z^2+t$.



    $(4)$ Let $w=sqrtu$.






    share|cite|improve this answer









    $endgroup$



    Assuming $z>0$,



    $$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$




    $(1)$ Tonelli's theorem



    $(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$



    $(3)$ Let $u = z^2+t$.



    $(4)$ Let $w=sqrtu$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Oct 20 '16 at 2:49









    Random VariableRandom Variable

    25.6k173139




    25.6k173139











    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49
















    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49















    $begingroup$
    Excellent. Your initial substitution is exactly what I was seeking.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 10:49




    $begingroup$
    Excellent. Your initial substitution is exactly what I was seeking.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 10:49











    1












    $begingroup$

    begineqnarray
    &&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
    &&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
    &&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
    &&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
    &&fracpi2 erfc(z) e^z^2
    endeqnarray

    where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      begineqnarray
      &&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
      &&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
      &&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
      &&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
      &&fracpi2 erfc(z) e^z^2
      endeqnarray

      where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        begineqnarray
        &&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
        &&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
        &&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
        &&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
        &&fracpi2 erfc(z) e^z^2
        endeqnarray

        where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






        share|cite|improve this answer









        $endgroup$



        begineqnarray
        &&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
        &&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
        &&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
        &&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
        &&fracpi2 erfc(z) e^z^2
        endeqnarray

        where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 25 at 17:21









        PrzemoPrzemo

        4,69811032




        4,69811032



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye