Show $frac2pi mathrmexp(-z^2) int_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can I evaluate $int_-infty^inftyfrace^-x^2(2x^2-1)1+x^2dx$?Integration involving rational function and exponentialsIntegrating a product of exponential and complementary error function with square-root of variable in the denominatorRepeated Indefinite Integration of Gaussian IntegralEvaluating $int_1^inftyx: texterfc(a+b log (x)) , dx$Prove $intlimits_0^infty mathrmexp(-ax^2-fracbx^2) mathrmd x = frac12sqrtfracpiamathrme^-2sqrtab$Prove $int_0^1 fracsin^-1(x)x dx = fracpi2ln2$Integrate $int_-infty^infty rm erfc left( fracxsqrt2 right) e^-frac(x-mu)^22 sigma^2 dx$Any simple way for proving $int_0^infty mathrmerf(x)erfc(x), dx = fracsqrt 2-1sqrtpi$?Integral of $exp[texterfc[C x]]$Calculating improper integral $int limits_0^inftyfracmathrme^-xsqrtx,mathrmdx$closed-form solution to $int_0^infty x^aexp(-bx)left(frac1texterfc(csqrtx)right)^2a$
Can a non-EU citizen traveling with me come with me through the EU passport line?
When is phishing education going too far?
Autumning in love
How do I automatically answer y in bash script?
Can I add database to AWS RDS MySQL without creating new instance?
What to do with post with dry rot?
If A makes B more likely then B makes A more likely"
How should I respond to a player wanting to catch a sword between their hands?
How do I keep my slimes from escaping their pens?
Unable to start mainnet node docker container
Stars Make Stars
Complexity of many constant time steps with occasional logarithmic steps
What is the largest species of polychaete?
What is the order of Mitzvot in Rambam's Sefer Hamitzvot?
Is 1 ppb equal to 1 μg/kg?
Do working physicists consider Newtonian mechanics to be "falsified"?
If I can make up priors, why can't I make up posteriors?
Did the new image of black hole confirm the general theory of relativity?
Classification of bundles, Postnikov towers, obstruction theory, local coefficients
Estimate capacitor parameters
What is the electric potential inside a point charge?
New Order #5: where Fibonacci and Beatty meet at Wythoff
3 doors, three guards, one stone
How many things? AとBがふたつ
Show $frac2pi mathrmexp(-z^2) int_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can I evaluate $int_-infty^inftyfrace^-x^2(2x^2-1)1+x^2dx$?Integration involving rational function and exponentialsIntegrating a product of exponential and complementary error function with square-root of variable in the denominatorRepeated Indefinite Integration of Gaussian IntegralEvaluating $int_1^inftyx: texterfc(a+b log (x)) , dx$Prove $intlimits_0^infty mathrmexp(-ax^2-fracbx^2) mathrmd x = frac12sqrtfracpiamathrme^-2sqrtab$Prove $int_0^1 fracsin^-1(x)x dx = fracpi2ln2$Integrate $int_-infty^infty rm erfc left( fracxsqrt2 right) e^-frac(x-mu)^22 sigma^2 dx$Any simple way for proving $int_0^infty mathrmerf(x)erfc(x), dx = fracsqrt 2-1sqrtpi$?Integral of $exp[texterfc[C x]]$Calculating improper integral $int limits_0^inftyfracmathrme^-xsqrtx,mathrmdx$closed-form solution to $int_0^infty x^aexp(-bx)left(frac1texterfc(csqrtx)right)^2a$
$begingroup$
I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.
For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes
beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign
integration definite-integrals special-functions error-function
$endgroup$
add a comment |
$begingroup$
I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.
For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes
beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign
integration definite-integrals special-functions error-function
$endgroup$
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
add a comment |
$begingroup$
I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.
For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes
beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign
integration definite-integrals special-functions error-function
$endgroup$
I used the result $$frac2pi mathrmexp(-z^2) intlimits_0^infty mathrmexp(-z^2x^2) frac1x^2+1 mathrmdx = mathrmerfc(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
frac2zpi mathrme^-z^2 intlimits_0^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endalign
we used the substitution $x=t/z$.
For the integral
beginequation
intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt
endequation
we let $f(t) = mathrme^-t^2$ and $g(t) = 1/(z^2 + t^2)$ and take Fourier transforms of each,
beginequation
mathrmF(s) = mathcalF[f(t)] = fracmathrme^-s^2/4sqrt2
endequation
and
beginequation
mathrmG(s) = mathcalF[g(t)] = frac1zsqrtfracpi2 mathrme^-z
endequation
then invoke Parseval's theorem
beginequation
intlimits_-infty^infty f(t)overlineg(t) mathrmdt
= intlimits_-infty^infty mathrmF(s)overlinemathrmG(s) mathrmds
endequation
dropping constants, the integral becomes
beginalign
intlimits_-infty^infty mathrme^-s^2/4 mathrme^-z mathrmds
&= 2intlimits_0^infty mathrme^-s^2/4 mathrme^-z mathrmds \
&= 2mathrme^z^2 intlimits_0^infty mathrme^-(s+2z)^2/4 mathrmds \
&= 4mathrme^z^2 intlimits_0^infty mathrme^-y^2 mathrmdy \
&= 2sqrtpimathrme^z^2 mathrmerfc(z)
endalign
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
beginalign
frac2pi mathrme^-z^2 intlimits_0^infty fracmathrme^-z^2x^2x^2 + 1 mathrmdx &=
fraczpi mathrme^-z^2 intlimits_-infty^infty fracmathrme^-t^2z^2 + t^2 mathrmdt \
&= fraczpi mathrme^-z^2 frac1sqrt2 frac1z sqrtfracpi2 2sqrtpi mathrme^z^2 mathrmerfc(z) \
&= mathrmerfc(z)
endalign
integration definite-integrals special-functions error-function
integration definite-integrals special-functions error-function
edited Apr 13 '17 at 12:20
Community♦
1
1
asked Oct 17 '16 at 22:02
poweierstrasspoweierstrass
1,765515
1,765515
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
add a comment |
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
With the substitution $x=fractz$, the integral on the left becomes
$$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
and we may switch to Fourier transforms. Since
$$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
$I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $texterfc$ function:
$$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$
$endgroup$
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
Assuming $z>0$,
$$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$
$(1)$ Tonelli's theorem
$(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$
$(3)$ Let $u = z^2+t$.
$(4)$ Let $w=sqrtu$.
$endgroup$
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
begineqnarray
&&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
&&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
&&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
&&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
&&fracpi2 erfc(z) e^z^2
endeqnarray
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With the substitution $x=fractz$, the integral on the left becomes
$$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
and we may switch to Fourier transforms. Since
$$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
$I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $texterfc$ function:
$$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$
$endgroup$
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
With the substitution $x=fractz$, the integral on the left becomes
$$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
and we may switch to Fourier transforms. Since
$$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
$I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $texterfc$ function:
$$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$
$endgroup$
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
With the substitution $x=fractz$, the integral on the left becomes
$$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
and we may switch to Fourier transforms. Since
$$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
$I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $texterfc$ function:
$$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$
$endgroup$
With the substitution $x=fractz$, the integral on the left becomes
$$I=frac2pi z e^z^2int_0^+inftyfrace^-t^21+fract^2z^2,dt = frac1pi z e^z^2int_-infty^+inftyfrace^-t^21+fract^2z^2,dt $$
and we may switch to Fourier transforms. Since
$$mathcalF(e^-t^2) = frac1sqrt2e^-s^2/4,qquad mathcalFleft(frac11+fract^2z^2right)=zsqrtfracpi2 e^-z$$
$I$ boils down to an integral of the form $int_0^+inftyexpleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ fracddz LHS = -frac2piint_0^+infty2z e^-z^2 (x^2+1),dx,qquad fracddzRHS = -frac2sqrtpie^-z^2.$$
We have $fracddz(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $texterfc$ function:
$$texterfc(z)=frac2e^-z^2piint_0^+inftyfrace^-z^2 x^2x^2+1,dxleq frac2e^-z^2piint_0^+inftyfracdx(x^2+1)(x^2 z^2+1)=frac1(1+z)e^z^2.$$
edited Oct 17 '16 at 23:27
answered Oct 17 '16 at 22:35
Jack D'AurizioJack D'Aurizio
292k33284673
292k33284673
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
1
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^A^+$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
Assuming $z>0$,
$$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$
$(1)$ Tonelli's theorem
$(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$
$(3)$ Let $u = z^2+t$.
$(4)$ Let $w=sqrtu$.
$endgroup$
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
Assuming $z>0$,
$$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$
$(1)$ Tonelli's theorem
$(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$
$(3)$ Let $u = z^2+t$.
$(4)$ Let $w=sqrtu$.
$endgroup$
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
Assuming $z>0$,
$$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$
$(1)$ Tonelli's theorem
$(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$
$(3)$ Let $u = z^2+t$.
$(4)$ Let $w=sqrtu$.
$endgroup$
Assuming $z>0$,
$$ beginalignint_0^infty frace^-z^2x^21+x^2 , dx &= int_0^inftye^-z^2x^2 int_0^inftye^-t(1+x^2) , dt , dx \ &= int_0^infty e^-t int_0^inftye^-(z^2+t)x^2 , dx , dt tag1\ &= fracsqrtpi2int_0^infty frace^-tsqrtz^2+t , dt tag2\ &= fracsqrtpi2 , e^z^2int_z^2^inftyfrace^-usqrtu , du \ &= sqrtpi , e^z^2 int_z^infty e^-w^2 , dw \ &= fracpi2 , e^z^2operatornameerfc(z) endalign$$
$(1)$ Tonelli's theorem
$(2)$ $int_0^infty e^-ax^2 , dx = fracsqrtpi2 frac1sqrta$ for $a>0$
$(3)$ Let $u = z^2+t$.
$(4)$ Let $w=sqrtu$.
answered Oct 20 '16 at 2:49
Random VariableRandom Variable
25.6k173139
25.6k173139
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
begineqnarray
&&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
&&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
&&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
&&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
&&fracpi2 erfc(z) e^z^2
endeqnarray
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
add a comment |
$begingroup$
begineqnarray
&&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
&&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
&&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
&&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
&&fracpi2 erfc(z) e^z^2
endeqnarray
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
add a comment |
$begingroup$
begineqnarray
&&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
&&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
&&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
&&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
&&fracpi2 erfc(z) e^z^2
endeqnarray
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
begineqnarray
&&intlimits_0^infty frace^-z^2 x^21+x^2 dx=\
&&intlimits_0^infty frace^-frac12 (sqrt2z)^2 x^21+x^2 dx=\
&&2 pi T(sqrt2 z, infty) e^frac12 (sqrt2z)^2\
&&2 pi intlimits_sqrt2 z^infty frace^-1/2 xi^2sqrt2 pi frac12 underbraceerf(fracinfty cdot xisqrt2)_1 dxi e^frac12 (sqrt2z)^2=\
&&fracpi2 erfc(z) e^z^2
endeqnarray
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
answered Mar 25 at 17:21
PrzemoPrzemo
4,69811032
4,69811032
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47