Prove $sum_kmid nmu(k)d(k)=(-1)^omega(n)$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Showing $sum_dmid n mu(d)tau(n/d)=1$ and $sum_dmid n mu(d)tau(d)=(-1)^r$Möbius function verificationProve $sum_k = 1^n mu(k)left[ frac nk right] = 1$Convolution identity involving the Möbius function $sum_n,d>0 |mu(d)| = 2^omega(n)$Prove that $sum_t vert n d^3(t) = (sum_t vert nd(t))^2$ for all $n in mathbbN$Proof of inequality involving multiplicative function?Bound for the sum of the divisors of a numberProve that $sum_n, d geq 1 = 2^omega(n)$Formula for unique distribution of colored balls into boxesUpper bound for the divisor counting function?How to invert an arithmetic function where Möbius inversion may not apply?
Cold is to Refrigerator as warm is to?
Is drag coefficient lowest at zero angle of attack?
Can a zero nonce be safely used with AES-GCM if the key is random and never used again?
Stars Make Stars
Who can trigger ship-wide alerts in Star Trek?
Stop battery usage [Ubuntu 18]
Is dark matter really a meaningful hypothesis?
How do I automatically answer y in bash script?
If A makes B more likely then B makes A more likely"
Direct Experience of Meditation
Blender game recording at the wrong time
Is there a service that would inform me whenever a new direct route is scheduled from a given airport?
Unexpected result with right shift after bitwise negation
How does the Nova's Burn power work at the 7-9 level?
When is phishing education going too far?
Fishing simulator
Why is there no army of Iron-Mans in the MCU?
Slither Like a Snake
Mortgage adviser recommends a longer term than necessary combined with overpayments
Cauchy Sequence Characterized only By Directly Neighbouring Sequence Members
How do we build a confidence interval for the parameter of the exponential distribution?
What loss function to use when labels are probabilities?
Are my PIs rude or am I just being too sensitive?
What are the performance impacts of 'functional' Rust?
Prove $sum_kmid nmu(k)d(k)=(-1)^omega(n)$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Showing $sum_dmid n mu(d)tau(n/d)=1$ and $sum_dmid n mu(d)tau(d)=(-1)^r$Möbius function verificationProve $sum_k = 1^n mu(k)left[ frac nk right] = 1$Convolution identity involving the Möbius function $sum_d |mu(d)| = 2^omega(n)$Prove that $sum_t vert n d^3(t) = (sum_t vert nd(t))^2$ for all $n in mathbbN$Proof of inequality involving multiplicative function?Bound for the sum of the divisors of a numberProve that $sum_n, d geq 1 = 2^omega(n)$Formula for unique distribution of colored balls into boxesUpper bound for the divisor counting function?How to invert an arithmetic function where Möbius inversion may not apply?
$begingroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_2mu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
$endgroup$
add a comment |
$begingroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_2mu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
$endgroup$
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
add a comment |
$begingroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_2mu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
$endgroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_2mu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
edited Mar 27 at 8:22
Eric Wofsey
193k14221352
193k14221352
asked Jul 19 '14 at 18:19
LalaloopsyLalaloopsy
89111221
89111221
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
add a comment |
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f871933%2fprove-sum-k-mid-n-mukdk-1-omegan%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
answered Jul 19 '14 at 18:26
Empy2Empy2
33.7k12562
33.7k12562
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
1
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
answered Jul 21 '14 at 2:23
PhicarPhicar
2,8651915
2,8651915
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f871933%2fprove-sum-k-mid-n-mukdk-1-omegan%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54