Can Kabsch's algorithm also provide the covariance of its solution? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Gauß-Jordan algorithm - 'reading' the solutionWhy Does SVD Provide the Least Squares and Least Norm Solution to $ A x = b $?Is it true that a arbitrary 3D rotation can be composed with two rotations constrained to have their axes in the same plane?Decomposition of 4x4 or larger affine transformation matrix to individual variables per degree of freedomHow can I get the covariance just given the variance?Can the system of equations be extracted from its solution?Is the least-squares solution unique?Covariance matrix for least squares solution to $Ax = b$ when both $A$ and $b$ have uncertaintiesLeast square solution to the systemHow can I make a best fit line out of data where each point is weighted more heavily than the previous?

Multi tool use
Multi tool use

What loss function to use when labels are probabilities?

Blender game recording at the wrong time

Do working physicists consider Newtonian mechanics to be "falsified"?

Determine whether f is a function, an injection, a surjection

Complexity of many constant time steps with occasional logarithmic steps

Two different pronunciation of "понял"

How does modal jazz use chord progressions?

How many things? AとBがふたつ

How can players take actions together that are impossible otherwise?

Fishing simulator

How should I respond to a player wanting to catch a sword between their hands?

Geometric mean and geometric standard deviation

Single author papers against my advisor's will?

Was credit for the black hole image misattributed?

Replacing HDD with SSD; what about non-APFS/APFS?

Is there folklore associating late breastfeeding with low intelligence and/or gullibility?

Why is "Captain Marvel" translated as male in Portugal?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

I'm having difficulty getting my players to do stuff in a sandbox campaign

Need a suitable toxic chemical for a murder plot in my novel

Autumning in love

Jazz greats knew nothing of modes. Why are they used to improvise on standards?

Windows 10: How to Lock (not sleep) laptop on lid close?

Active filter with series inductor and resistor - do these exist?



Can Kabsch's algorithm also provide the covariance of its solution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Gauß-Jordan algorithm - 'reading' the solutionWhy Does SVD Provide the Least Squares and Least Norm Solution to $ A x = b $?Is it true that a arbitrary 3D rotation can be composed with two rotations constrained to have their axes in the same plane?Decomposition of 4x4 or larger affine transformation matrix to individual variables per degree of freedomHow can I get the covariance just given the variance?Can the system of equations be extracted from its solution?Is the least-squares solution unique?Covariance matrix for least squares solution to $Ax = b$ when both $A$ and $b$ have uncertaintiesLeast square solution to the systemHow can I make a best fit line out of data where each point is weighted more heavily than the previous?










0












$begingroup$


Say you have a collection of data points $p_i in Bbb R^3$, and a collection of corresponding reference points $r_i in Bbb R^3$. Kabsch's algorithm, which relies on SVD decomposition, provides an efficient way to determine the rigid transformation that best (in a least squares of errors sense) transforms the $r_i$ to $p_i$.



This is equivalent to saying that if each $p_i$ is known to have been chosen as a 3-D Gaussian variate with unit variance and mean at the transformed value of $r_i$, then the solution found is the transformation with the highest likelihood.



Having determined that transformation, which is described by a translation vector $vec t$ and a rotation $R$ characterized as the product of three axial rotations
$$
R = R_z(psi)R_y(theta)R_x(phi)
$$

I would like to calculate the covariance matrix among $t_x, t_y, t_z, psi, theta, phi$.



Is there a "standard" or particularly elegant/efficient way to find that covariance, given that we already have the intermediate information used by Kabsch's algorithm?










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    Say you have a collection of data points $p_i in Bbb R^3$, and a collection of corresponding reference points $r_i in Bbb R^3$. Kabsch's algorithm, which relies on SVD decomposition, provides an efficient way to determine the rigid transformation that best (in a least squares of errors sense) transforms the $r_i$ to $p_i$.



    This is equivalent to saying that if each $p_i$ is known to have been chosen as a 3-D Gaussian variate with unit variance and mean at the transformed value of $r_i$, then the solution found is the transformation with the highest likelihood.



    Having determined that transformation, which is described by a translation vector $vec t$ and a rotation $R$ characterized as the product of three axial rotations
    $$
    R = R_z(psi)R_y(theta)R_x(phi)
    $$

    I would like to calculate the covariance matrix among $t_x, t_y, t_z, psi, theta, phi$.



    Is there a "standard" or particularly elegant/efficient way to find that covariance, given that we already have the intermediate information used by Kabsch's algorithm?










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      Say you have a collection of data points $p_i in Bbb R^3$, and a collection of corresponding reference points $r_i in Bbb R^3$. Kabsch's algorithm, which relies on SVD decomposition, provides an efficient way to determine the rigid transformation that best (in a least squares of errors sense) transforms the $r_i$ to $p_i$.



      This is equivalent to saying that if each $p_i$ is known to have been chosen as a 3-D Gaussian variate with unit variance and mean at the transformed value of $r_i$, then the solution found is the transformation with the highest likelihood.



      Having determined that transformation, which is described by a translation vector $vec t$ and a rotation $R$ characterized as the product of three axial rotations
      $$
      R = R_z(psi)R_y(theta)R_x(phi)
      $$

      I would like to calculate the covariance matrix among $t_x, t_y, t_z, psi, theta, phi$.



      Is there a "standard" or particularly elegant/efficient way to find that covariance, given that we already have the intermediate information used by Kabsch's algorithm?










      share|cite|improve this question









      $endgroup$




      Say you have a collection of data points $p_i in Bbb R^3$, and a collection of corresponding reference points $r_i in Bbb R^3$. Kabsch's algorithm, which relies on SVD decomposition, provides an efficient way to determine the rigid transformation that best (in a least squares of errors sense) transforms the $r_i$ to $p_i$.



      This is equivalent to saying that if each $p_i$ is known to have been chosen as a 3-D Gaussian variate with unit variance and mean at the transformed value of $r_i$, then the solution found is the transformation with the highest likelihood.



      Having determined that transformation, which is described by a translation vector $vec t$ and a rotation $R$ characterized as the product of three axial rotations
      $$
      R = R_z(psi)R_y(theta)R_x(phi)
      $$

      I would like to calculate the covariance matrix among $t_x, t_y, t_z, psi, theta, phi$.



      Is there a "standard" or particularly elegant/efficient way to find that covariance, given that we already have the intermediate information used by Kabsch's algorithm?







      linear-algebra least-squares data-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 25 at 19:30









      Mark FischlerMark Fischler

      34.2k12552




      34.2k12552




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162224%2fcan-kabschs-algorithm-also-provide-the-covariance-of-its-solution%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162224%2fcan-kabschs-algorithm-also-provide-the-covariance-of-its-solution%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          fYUCZlWOD6G qFR,YC wCNx7qn,UhCgK3 2LSzA2,ZKRr ehj,FTZ6dddfdJXPrq A
          0ymj dBgSL99,UjPjhnEx0O N287ZrJMTq9FWSCcvB SdCK6PCpo 0c

          Popular posts from this blog

          Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee