Prove that $ int _0^inftyfracsin xxdx=fracpi2$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)$sum_n=-infty^inftyfrac1(n+alpha)^2=fracpi^2(sin pi alpha)^2$?Show $lim_Ntoinftyint_0^pileft(frac1sinfracx2-frac2xright)sinleft((N+frac12)xright)dx=0$Show that Fourier transformation is differentiable if $int|xf(x)|,dlambda<infty$Riemann Lebesgue Lemma Clarification$lim_lambda to infty int^b_0 f(t) fracsin(lambda t)t $The improper integrals of $fracsin tt$ and $left|fracsin ttright|$Calculate limits of integralsAlternate proof of Dirichlet integral $fracsin(x)x$.Riemann-Lebesgue Lemma And Integral Having $sin(cdot)$Abel means of function f when having a jump discontinuity
Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?
Why are there no cargo aircraft with "flying wing" design?
Why are both D and D# fitting into my E minor key?
When the Haste spell ends on a creature, do attackers have advantage against that creature?
Extracting terms with certain heads in a function
Do wooden building fires get hotter than 600°C?
Fundamental Solution of the Pell Equation
Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?
How could we fake a moon landing now?
Where are Serre’s lectures at Collège de France to be found?
Denied boarding although I have proper visa and documentation. To whom should I make a complaint?
What is the longest distance a player character can jump in one leap?
What causes the direction of lightning flashes?
What do you call the main part of a joke?
Is it cost-effective to upgrade an old-ish Giant Escape R3 commuter bike with entry-level branded parts (wheels, drivetrain)?
Most bit efficient text communication method?
Generate an RGB colour grid
Wu formula for manifolds with boundary
An adverb for when you're not exaggerating
Is safe to use va_start macro with this as parameter?
How to react to hostile behavior from a senior developer?
What are the out-of-universe reasons for the references to Toby Maguire-era Spider-Man in ITSV
What does the "x" in "x86" represent?
Using audio cues to encourage good posture
Prove that $ int _0^inftyfracsin xxdx=fracpi2$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)$sum_n=-infty^inftyfrac1(n+alpha)^2=fracpi^2(sin pi alpha)^2$?Show $lim_Ntoinftyint_0^pileft(frac1sinfracx2-frac2xright)sinleft((N+frac12)xright)dx=0$Show that Fourier transformation is differentiable if $int|xf(x)|,dlambda<infty$Riemann Lebesgue Lemma Clarification$lim_lambda to infty int^b_0 f(t) fracsin(lambda t)t $The improper integrals of $fracsin tt$ and $left|fracsin ttright|$Calculate limits of integralsAlternate proof of Dirichlet integral $fracsin(x)x$.Riemann-Lebesgue Lemma And Integral Having $sin(cdot)$Abel means of function f when having a jump discontinuity
$begingroup$
Prove
$$int_0^inftyfracsin xxdx=fracpi2$$
Start with the fact that the integral of $D_N(theta)$ equals $2pi$, and note that the difference $$frac1sin(theta/2)-frac2theta$$
is continuous on $[-pi,pi]$. Apply the Riemann-Lebesgue lemma.
$$D_N(x)=sum_-N^Ne^inx=fracsin((N+1/2)x)sin(x/2)$$
Now I can only think to apply the Riemann-Lebesgue lemma to the function
$$frac1sin(theta/2)-frac2theta$$
To get :
$$lim_nto inftyfrac12piint_-pi^pi(frace^-inthetasin(theta/2)-frac2e^-inthetatheta)dthetato0$$But I don't know the steps to prove this.
fourier-analysis
$endgroup$
|
show 2 more comments
$begingroup$
Prove
$$int_0^inftyfracsin xxdx=fracpi2$$
Start with the fact that the integral of $D_N(theta)$ equals $2pi$, and note that the difference $$frac1sin(theta/2)-frac2theta$$
is continuous on $[-pi,pi]$. Apply the Riemann-Lebesgue lemma.
$$D_N(x)=sum_-N^Ne^inx=fracsin((N+1/2)x)sin(x/2)$$
Now I can only think to apply the Riemann-Lebesgue lemma to the function
$$frac1sin(theta/2)-frac2theta$$
To get :
$$lim_nto inftyfrac12piint_-pi^pi(frace^-inthetasin(theta/2)-frac2e^-inthetatheta)dthetato0$$But I don't know the steps to prove this.
fourier-analysis
$endgroup$
$begingroup$
It appears you're trying to follow a specific argument for the integral here. In order for the rest of us to understand what you're doing, we need more context about that argument. For example, what is $D_N$?
$endgroup$
– jmerry
Mar 27 at 4:57
$begingroup$
you have a limit as $n to infty$ on the LHS and an $n$ on the RHS
$endgroup$
– mathworker21
Mar 27 at 4:58
$begingroup$
On the last line, both integrals are badly non-convergent.
$endgroup$
– Lord Shark the Unknown
Mar 27 at 5:07
$begingroup$
I changed it according to the form of Riemann-Lebesgue lemma.
$endgroup$
– John He
Mar 27 at 5:13
$begingroup$
@jmerry - If I had to guess at a glance, it probably is tied to the Dirichlet kernel somehow or another
$endgroup$
– Eevee Trainer
Mar 27 at 5:14
|
show 2 more comments
$begingroup$
Prove
$$int_0^inftyfracsin xxdx=fracpi2$$
Start with the fact that the integral of $D_N(theta)$ equals $2pi$, and note that the difference $$frac1sin(theta/2)-frac2theta$$
is continuous on $[-pi,pi]$. Apply the Riemann-Lebesgue lemma.
$$D_N(x)=sum_-N^Ne^inx=fracsin((N+1/2)x)sin(x/2)$$
Now I can only think to apply the Riemann-Lebesgue lemma to the function
$$frac1sin(theta/2)-frac2theta$$
To get :
$$lim_nto inftyfrac12piint_-pi^pi(frace^-inthetasin(theta/2)-frac2e^-inthetatheta)dthetato0$$But I don't know the steps to prove this.
fourier-analysis
$endgroup$
Prove
$$int_0^inftyfracsin xxdx=fracpi2$$
Start with the fact that the integral of $D_N(theta)$ equals $2pi$, and note that the difference $$frac1sin(theta/2)-frac2theta$$
is continuous on $[-pi,pi]$. Apply the Riemann-Lebesgue lemma.
$$D_N(x)=sum_-N^Ne^inx=fracsin((N+1/2)x)sin(x/2)$$
Now I can only think to apply the Riemann-Lebesgue lemma to the function
$$frac1sin(theta/2)-frac2theta$$
To get :
$$lim_nto inftyfrac12piint_-pi^pi(frace^-inthetasin(theta/2)-frac2e^-inthetatheta)dthetato0$$But I don't know the steps to prove this.
fourier-analysis
fourier-analysis
edited Mar 27 at 5:11
John He
asked Mar 27 at 4:52
John HeJohn He
668
668
$begingroup$
It appears you're trying to follow a specific argument for the integral here. In order for the rest of us to understand what you're doing, we need more context about that argument. For example, what is $D_N$?
$endgroup$
– jmerry
Mar 27 at 4:57
$begingroup$
you have a limit as $n to infty$ on the LHS and an $n$ on the RHS
$endgroup$
– mathworker21
Mar 27 at 4:58
$begingroup$
On the last line, both integrals are badly non-convergent.
$endgroup$
– Lord Shark the Unknown
Mar 27 at 5:07
$begingroup$
I changed it according to the form of Riemann-Lebesgue lemma.
$endgroup$
– John He
Mar 27 at 5:13
$begingroup$
@jmerry - If I had to guess at a glance, it probably is tied to the Dirichlet kernel somehow or another
$endgroup$
– Eevee Trainer
Mar 27 at 5:14
|
show 2 more comments
$begingroup$
It appears you're trying to follow a specific argument for the integral here. In order for the rest of us to understand what you're doing, we need more context about that argument. For example, what is $D_N$?
$endgroup$
– jmerry
Mar 27 at 4:57
$begingroup$
you have a limit as $n to infty$ on the LHS and an $n$ on the RHS
$endgroup$
– mathworker21
Mar 27 at 4:58
$begingroup$
On the last line, both integrals are badly non-convergent.
$endgroup$
– Lord Shark the Unknown
Mar 27 at 5:07
$begingroup$
I changed it according to the form of Riemann-Lebesgue lemma.
$endgroup$
– John He
Mar 27 at 5:13
$begingroup$
@jmerry - If I had to guess at a glance, it probably is tied to the Dirichlet kernel somehow or another
$endgroup$
– Eevee Trainer
Mar 27 at 5:14
$begingroup$
It appears you're trying to follow a specific argument for the integral here. In order for the rest of us to understand what you're doing, we need more context about that argument. For example, what is $D_N$?
$endgroup$
– jmerry
Mar 27 at 4:57
$begingroup$
It appears you're trying to follow a specific argument for the integral here. In order for the rest of us to understand what you're doing, we need more context about that argument. For example, what is $D_N$?
$endgroup$
– jmerry
Mar 27 at 4:57
$begingroup$
you have a limit as $n to infty$ on the LHS and an $n$ on the RHS
$endgroup$
– mathworker21
Mar 27 at 4:58
$begingroup$
you have a limit as $n to infty$ on the LHS and an $n$ on the RHS
$endgroup$
– mathworker21
Mar 27 at 4:58
$begingroup$
On the last line, both integrals are badly non-convergent.
$endgroup$
– Lord Shark the Unknown
Mar 27 at 5:07
$begingroup$
On the last line, both integrals are badly non-convergent.
$endgroup$
– Lord Shark the Unknown
Mar 27 at 5:07
$begingroup$
I changed it according to the form of Riemann-Lebesgue lemma.
$endgroup$
– John He
Mar 27 at 5:13
$begingroup$
I changed it according to the form of Riemann-Lebesgue lemma.
$endgroup$
– John He
Mar 27 at 5:13
$begingroup$
@jmerry - If I had to guess at a glance, it probably is tied to the Dirichlet kernel somehow or another
$endgroup$
– Eevee Trainer
Mar 27 at 5:14
$begingroup$
@jmerry - If I had to guess at a glance, it probably is tied to the Dirichlet kernel somehow or another
$endgroup$
– Eevee Trainer
Mar 27 at 5:14
|
show 2 more comments
2 Answers
2
active
oldest
votes
$begingroup$
Note that
$$int_-pi^pi D_N(t),dt=2pi.$$
Use that
$$int_-pi^pisin((N+1/2)t)left(frac1sin t/2-frac 2tright),dtto0$$
as $Ntoinfty$ (Riemann-Lebesgue) to deduce that
$$lim_Ntoinftyint_-pi^pifracsin((N+1/2)t)t,dx=pi.$$
$endgroup$
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
add a comment |
$begingroup$
Consider the Laplace transform
$$
F(s)=int_0^inftye^-sxfracsin xxdx.
$$
Your integral is $lim_sdownarrow 0F(s)$. For $s > 0$,
$$
F'(s)=int_0^inftye^-sxsin xdx \
= Im int_0^inftye^-sxe^ixdx \
= Im int_0^inftye^-x(s+i)dx \
= Im frac1s+i=Imfracs-i1+s^2 \=-frac11+s^2
$$
Therefore $F(s)=-tan^-1(s)+C$ for some constant $C$. Because $F(infty)=0$, then $C=fracpi2$. So
$$
int_0^inftye^-sxfracsin xxdx = fracpi2-tan^-1(s).
$$
Letting $sdownarrow 0$ gives
$$
int_0^inftyfracsin xxdx=fracpi2.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164117%2fprove-that-int-0-infty-frac-sin-xxdx-frac-pi2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
$$int_-pi^pi D_N(t),dt=2pi.$$
Use that
$$int_-pi^pisin((N+1/2)t)left(frac1sin t/2-frac 2tright),dtto0$$
as $Ntoinfty$ (Riemann-Lebesgue) to deduce that
$$lim_Ntoinftyint_-pi^pifracsin((N+1/2)t)t,dx=pi.$$
$endgroup$
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
add a comment |
$begingroup$
Note that
$$int_-pi^pi D_N(t),dt=2pi.$$
Use that
$$int_-pi^pisin((N+1/2)t)left(frac1sin t/2-frac 2tright),dtto0$$
as $Ntoinfty$ (Riemann-Lebesgue) to deduce that
$$lim_Ntoinftyint_-pi^pifracsin((N+1/2)t)t,dx=pi.$$
$endgroup$
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
add a comment |
$begingroup$
Note that
$$int_-pi^pi D_N(t),dt=2pi.$$
Use that
$$int_-pi^pisin((N+1/2)t)left(frac1sin t/2-frac 2tright),dtto0$$
as $Ntoinfty$ (Riemann-Lebesgue) to deduce that
$$lim_Ntoinftyint_-pi^pifracsin((N+1/2)t)t,dx=pi.$$
$endgroup$
Note that
$$int_-pi^pi D_N(t),dt=2pi.$$
Use that
$$int_-pi^pisin((N+1/2)t)left(frac1sin t/2-frac 2tright),dtto0$$
as $Ntoinfty$ (Riemann-Lebesgue) to deduce that
$$lim_Ntoinftyint_-pi^pifracsin((N+1/2)t)t,dx=pi.$$
answered Mar 27 at 5:16
Lord Shark the UnknownLord Shark the Unknown
109k1163136
109k1163136
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
add a comment |
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
$begingroup$
Thank you. I did It again with My original path, and I find It's essentially the same thing.
$endgroup$
– John He
Mar 27 at 5:30
add a comment |
$begingroup$
Consider the Laplace transform
$$
F(s)=int_0^inftye^-sxfracsin xxdx.
$$
Your integral is $lim_sdownarrow 0F(s)$. For $s > 0$,
$$
F'(s)=int_0^inftye^-sxsin xdx \
= Im int_0^inftye^-sxe^ixdx \
= Im int_0^inftye^-x(s+i)dx \
= Im frac1s+i=Imfracs-i1+s^2 \=-frac11+s^2
$$
Therefore $F(s)=-tan^-1(s)+C$ for some constant $C$. Because $F(infty)=0$, then $C=fracpi2$. So
$$
int_0^inftye^-sxfracsin xxdx = fracpi2-tan^-1(s).
$$
Letting $sdownarrow 0$ gives
$$
int_0^inftyfracsin xxdx=fracpi2.
$$
$endgroup$
add a comment |
$begingroup$
Consider the Laplace transform
$$
F(s)=int_0^inftye^-sxfracsin xxdx.
$$
Your integral is $lim_sdownarrow 0F(s)$. For $s > 0$,
$$
F'(s)=int_0^inftye^-sxsin xdx \
= Im int_0^inftye^-sxe^ixdx \
= Im int_0^inftye^-x(s+i)dx \
= Im frac1s+i=Imfracs-i1+s^2 \=-frac11+s^2
$$
Therefore $F(s)=-tan^-1(s)+C$ for some constant $C$. Because $F(infty)=0$, then $C=fracpi2$. So
$$
int_0^inftye^-sxfracsin xxdx = fracpi2-tan^-1(s).
$$
Letting $sdownarrow 0$ gives
$$
int_0^inftyfracsin xxdx=fracpi2.
$$
$endgroup$
add a comment |
$begingroup$
Consider the Laplace transform
$$
F(s)=int_0^inftye^-sxfracsin xxdx.
$$
Your integral is $lim_sdownarrow 0F(s)$. For $s > 0$,
$$
F'(s)=int_0^inftye^-sxsin xdx \
= Im int_0^inftye^-sxe^ixdx \
= Im int_0^inftye^-x(s+i)dx \
= Im frac1s+i=Imfracs-i1+s^2 \=-frac11+s^2
$$
Therefore $F(s)=-tan^-1(s)+C$ for some constant $C$. Because $F(infty)=0$, then $C=fracpi2$. So
$$
int_0^inftye^-sxfracsin xxdx = fracpi2-tan^-1(s).
$$
Letting $sdownarrow 0$ gives
$$
int_0^inftyfracsin xxdx=fracpi2.
$$
$endgroup$
Consider the Laplace transform
$$
F(s)=int_0^inftye^-sxfracsin xxdx.
$$
Your integral is $lim_sdownarrow 0F(s)$. For $s > 0$,
$$
F'(s)=int_0^inftye^-sxsin xdx \
= Im int_0^inftye^-sxe^ixdx \
= Im int_0^inftye^-x(s+i)dx \
= Im frac1s+i=Imfracs-i1+s^2 \=-frac11+s^2
$$
Therefore $F(s)=-tan^-1(s)+C$ for some constant $C$. Because $F(infty)=0$, then $C=fracpi2$. So
$$
int_0^inftye^-sxfracsin xxdx = fracpi2-tan^-1(s).
$$
Letting $sdownarrow 0$ gives
$$
int_0^inftyfracsin xxdx=fracpi2.
$$
answered Mar 29 at 2:40
DisintegratingByPartsDisintegratingByParts
60.5k42681
60.5k42681
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164117%2fprove-that-int-0-infty-frac-sin-xxdx-frac-pi2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It appears you're trying to follow a specific argument for the integral here. In order for the rest of us to understand what you're doing, we need more context about that argument. For example, what is $D_N$?
$endgroup$
– jmerry
Mar 27 at 4:57
$begingroup$
you have a limit as $n to infty$ on the LHS and an $n$ on the RHS
$endgroup$
– mathworker21
Mar 27 at 4:58
$begingroup$
On the last line, both integrals are badly non-convergent.
$endgroup$
– Lord Shark the Unknown
Mar 27 at 5:07
$begingroup$
I changed it according to the form of Riemann-Lebesgue lemma.
$endgroup$
– John He
Mar 27 at 5:13
$begingroup$
@jmerry - If I had to guess at a glance, it probably is tied to the Dirichlet kernel somehow or another
$endgroup$
– Eevee Trainer
Mar 27 at 5:14