stability for 2D crank-nicolson scheme for heat equationWeak solution for Burgers' equationParticular answer to a differential Equation Involving Delta function and Heaviside without LaplaceStability of advection equationLax-Wendroff method for linear advection - Stability analysisCrank-Nicolson for coupled PDE'sUniqueness/stability for heat equations with complicated initial-boundary conditionsCrank Nicolson with variable diffusion coefficient in space and timeIteration step of the Crank–Nicolson schemeUnderstanding a basic scheme for the heat equationCalculating convergence order of numerical scheme for PDEChecking the stability of finite difference schemesStability of numerical scheme for heat equation
Why the "ls" command is showing the permissions of files in a FAT32 partition?
How to I force windows to use a specific version of SQLCMD?
What happens if I try to grapple an illusory duplicate from the Mirror Image spell?
Mimic lecturing on blackboard, facing audience
Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?
How to leave product feedback on macOS?
How to get directions in deep space?
Why do Radio Buttons not fill the entire outer circle?
Overlapping circles covering polygon
Does the Crossbow Expert feat's extra crossbow attack work with the reaction attack from a Hunter ranger's Giant Killer feature?
"Oh no!" in Latin
If Captain Marvel (MCU) were to have a child with a human male, would the child be human or Kree?
Should I assume I have passed probation?
Difference between shutdown options
The Digit Triangles
Deciphering cause of death?
Is there anyway, I can have two passwords for my wi-fi
When and why was runway 07/25 at Kai Tak removed?
Why does a 97 / 92 key piano exist by Bösendorfer?
ContourPlot — How do I color by contour curvature?
Do I have to know the General Relativity theory to understand the concept of inertial frame?
How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?
Can I say "fingers" when referring to toes?
How many people need to be born every 8 years to sustain population?
stability for 2D crank-nicolson scheme for heat equation
Weak solution for Burgers' equationParticular answer to a differential Equation Involving Delta function and Heaviside without LaplaceStability of advection equationLax-Wendroff method for linear advection - Stability analysisCrank-Nicolson for coupled PDE'sUniqueness/stability for heat equations with complicated initial-boundary conditionsCrank Nicolson with variable diffusion coefficient in space and timeIteration step of the Crank–Nicolson schemeUnderstanding a basic scheme for the heat equationCalculating convergence order of numerical scheme for PDEChecking the stability of finite difference schemesStability of numerical scheme for heat equation
$begingroup$
We have parabolic 2D pde
beginalign*
v_t &= nu (v_xx + v_yy) + F(x,y,t), ; ; ; (x,y) in R, ; t >0 \
v(x,y,t) &= g(x,y,t), ; ; texton ; partial R, ; t>0 \
v(x,y,0) &= f(x,y), ; ; (x,y) in overlineR \
endalign*
We want to study the stability of scheme
beginalign*
left(1 - frac r_x2 delta_x^2 - frac r_y2 delta_y^2 right) u_jk^n+1 &= u_jk^n + frac Delta t2 (F_jk^n + F_jk^n+1 ) + frac r_x 2 delta_x^2 u_jk^n + frac r_y 2 delta_y^2 u_jk^n\
u_0k^n &= g(0,k Delta y, n Delta t ) \
u_M_x k^n &= g(1, k Delta y, n Delta t) \
u_j 0 ^n &= g(j Delta x, 0, n Delta t) \
u_j M_y ^n &= g(j Delta x, 1 , n Delta t) \
endalign*
the Crank-Nicolson scheme. It is supposed to be uncondionally stable. MY question is,
Do we just need to apply discrete von neumann criteria
$$ u_jk^n = xi^n e^ijp pi Delta x + i k q pi Delta y $$
with exclusion of $F$ source term then get and equation for $xi$
so all we need to find is conditions on $r_x, r_y$ that makes $|xi | leq 1$ which is the necessary condition for stability.
IS this correct?
pde numerical-methods
$endgroup$
add a comment |
$begingroup$
We have parabolic 2D pde
beginalign*
v_t &= nu (v_xx + v_yy) + F(x,y,t), ; ; ; (x,y) in R, ; t >0 \
v(x,y,t) &= g(x,y,t), ; ; texton ; partial R, ; t>0 \
v(x,y,0) &= f(x,y), ; ; (x,y) in overlineR \
endalign*
We want to study the stability of scheme
beginalign*
left(1 - frac r_x2 delta_x^2 - frac r_y2 delta_y^2 right) u_jk^n+1 &= u_jk^n + frac Delta t2 (F_jk^n + F_jk^n+1 ) + frac r_x 2 delta_x^2 u_jk^n + frac r_y 2 delta_y^2 u_jk^n\
u_0k^n &= g(0,k Delta y, n Delta t ) \
u_M_x k^n &= g(1, k Delta y, n Delta t) \
u_j 0 ^n &= g(j Delta x, 0, n Delta t) \
u_j M_y ^n &= g(j Delta x, 1 , n Delta t) \
endalign*
the Crank-Nicolson scheme. It is supposed to be uncondionally stable. MY question is,
Do we just need to apply discrete von neumann criteria
$$ u_jk^n = xi^n e^ijp pi Delta x + i k q pi Delta y $$
with exclusion of $F$ source term then get and equation for $xi$
so all we need to find is conditions on $r_x, r_y$ that makes $|xi | leq 1$ which is the necessary condition for stability.
IS this correct?
pde numerical-methods
$endgroup$
add a comment |
$begingroup$
We have parabolic 2D pde
beginalign*
v_t &= nu (v_xx + v_yy) + F(x,y,t), ; ; ; (x,y) in R, ; t >0 \
v(x,y,t) &= g(x,y,t), ; ; texton ; partial R, ; t>0 \
v(x,y,0) &= f(x,y), ; ; (x,y) in overlineR \
endalign*
We want to study the stability of scheme
beginalign*
left(1 - frac r_x2 delta_x^2 - frac r_y2 delta_y^2 right) u_jk^n+1 &= u_jk^n + frac Delta t2 (F_jk^n + F_jk^n+1 ) + frac r_x 2 delta_x^2 u_jk^n + frac r_y 2 delta_y^2 u_jk^n\
u_0k^n &= g(0,k Delta y, n Delta t ) \
u_M_x k^n &= g(1, k Delta y, n Delta t) \
u_j 0 ^n &= g(j Delta x, 0, n Delta t) \
u_j M_y ^n &= g(j Delta x, 1 , n Delta t) \
endalign*
the Crank-Nicolson scheme. It is supposed to be uncondionally stable. MY question is,
Do we just need to apply discrete von neumann criteria
$$ u_jk^n = xi^n e^ijp pi Delta x + i k q pi Delta y $$
with exclusion of $F$ source term then get and equation for $xi$
so all we need to find is conditions on $r_x, r_y$ that makes $|xi | leq 1$ which is the necessary condition for stability.
IS this correct?
pde numerical-methods
$endgroup$
We have parabolic 2D pde
beginalign*
v_t &= nu (v_xx + v_yy) + F(x,y,t), ; ; ; (x,y) in R, ; t >0 \
v(x,y,t) &= g(x,y,t), ; ; texton ; partial R, ; t>0 \
v(x,y,0) &= f(x,y), ; ; (x,y) in overlineR \
endalign*
We want to study the stability of scheme
beginalign*
left(1 - frac r_x2 delta_x^2 - frac r_y2 delta_y^2 right) u_jk^n+1 &= u_jk^n + frac Delta t2 (F_jk^n + F_jk^n+1 ) + frac r_x 2 delta_x^2 u_jk^n + frac r_y 2 delta_y^2 u_jk^n\
u_0k^n &= g(0,k Delta y, n Delta t ) \
u_M_x k^n &= g(1, k Delta y, n Delta t) \
u_j 0 ^n &= g(j Delta x, 0, n Delta t) \
u_j M_y ^n &= g(j Delta x, 1 , n Delta t) \
endalign*
the Crank-Nicolson scheme. It is supposed to be uncondionally stable. MY question is,
Do we just need to apply discrete von neumann criteria
$$ u_jk^n = xi^n e^ijp pi Delta x + i k q pi Delta y $$
with exclusion of $F$ source term then get and equation for $xi$
so all we need to find is conditions on $r_x, r_y$ that makes $|xi | leq 1$ which is the necessary condition for stability.
IS this correct?
pde numerical-methods
pde numerical-methods
asked Mar 14 at 6:18
Mikey SpivakMikey Spivak
382215
382215
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147624%2fstability-for-2d-crank-nicolson-scheme-for-heat-equation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147624%2fstability-for-2d-crank-nicolson-scheme-for-heat-equation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown