closed form of $prod_n=1^inftyleft(fracnn+1right)^(-1)^n-1n$Evaluating a trigonometric product $prod_n=1^inftycos^2left(frac1n^2right)$Closed form for the infinite product $prodlimits_k=0^infty left( 1-x^2^k right)$Closed form of infinite product $prodlimits_k=0^infty 2 left(1-fracx^1/2^k+11+x^1/2^k right)$Does $prod_t=1^inftyleft(1-frac11.127^tright)$ converge to a non-zero value?Closed form for $prod_i=2^infty (1 - frac1i!)$How to compute $prod_n=2^infty left(1-frac1n^nright)$?Closed form for the series $sum_k=1^infty (-1)^k ln left( tanh fracpi k x2 right)$Find closed form of Wallis's product type $prod_n=1^inftyleft(prod_k=0^m(n+k)^mchoose k(-1)^kright)^(-1)^n$Finding the closed form of the product $prod_i = 1^infty (1 - 1/q^i) $.Is the product $prod_n=1^inftyleft(fracGamma(n+frac12)sqrtnGamma(n)right)$ convergent?

Do I have to take mana from my deck or hand when tapping a dual land?

Anime with legendary swords made from talismans and a man who could change them with a shattered body

Why is the principal energy of an electron lower for excited electrons in a higher energy state?

ContourPlot — How do I color by contour curvature?

Should I assume I have passed probation?

Showing mass murder in a kid's book

Why is participating in the European Parliamentary elections used as a threat?

What does "tick" mean in this sentence?

Why do Radio Buttons not fill the entire outer circle?

Why would five hundred and five be same as one?

Did I make a mistake by ccing email to boss to others?

"Oh no!" in Latin

How much do grades matter for a future academia position?

Air travel with refrigerated insulin

How to reduce predictors the right way for a logistic regression model

Alignment of six matrices

Unable to disable Microsoft Store in domain environment

What the heck is gets(stdin) on site coderbyte?

Pre-Employment Background Check With Consent For Future Checks

Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?

Echo with obfuscation

Why the "ls" command is showing the permissions of files in a FAT32 partition?

How to get directions in deep space?

Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?



closed form of $prod_n=1^inftyleft(fracnn+1right)^(-1)^n-1n$


Evaluating a trigonometric product $prod_n=1^inftycos^2left(frac1n^2right)$Closed form for the infinite product $prodlimits_k=0^infty left( 1-x^2^k right)$Closed form of infinite product $prodlimits_k=0^infty 2 left(1-fracx^1/2^k+11+x^1/2^k right)$Does $prod_t=1^inftyleft(1-frac11.127^tright)$ converge to a non-zero value?Closed form for $prod_i=2^infty (1 - frac1i!)$How to compute $prod_n=2^infty left(1-frac1n^nright)$?Closed form for the series $sum_k=1^infty (-1)^k ln left( tanh fracpi k x2 right)$Find closed form of Wallis's product type $prod_n=1^inftyleft(prod_k=0^m(n+k)^mchoose k(-1)^kright)^(-1)^n$Finding the closed form of the product $prod_i = 1^infty (1 - 1/q^i) $.Is the product $prod_n=1^inftyleft(fracGamma(n+frac12)sqrtnGamma(n)right)$ convergent?













3












$begingroup$


I am looking for the closed form of this product.
$$prod_n=1^inftyleft(fracnn+1right)^(-1)^n-1n$$



I have sees it somewhere before but I can't remember it closed form. I remember the Glaisher's constant it is invloved alone with $2^7/6$ and maybe e (exponential function constant) also.



Does anyone knows it closed form?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Is it convergent? I got the product to be $$frac 3^5 cdot 5^9 cdot 7^13 cdots 2^3 cdot 4^7 cdot 6^11 cdots$$ which is definitely divergent.
    $endgroup$
    – Dbchatto67
    Mar 14 at 7:32











  • $begingroup$
    There are two limits possible, please see my answer.
    $endgroup$
    – user90369
    Mar 14 at 16:51















3












$begingroup$


I am looking for the closed form of this product.
$$prod_n=1^inftyleft(fracnn+1right)^(-1)^n-1n$$



I have sees it somewhere before but I can't remember it closed form. I remember the Glaisher's constant it is invloved alone with $2^7/6$ and maybe e (exponential function constant) also.



Does anyone knows it closed form?










share|cite|improve this question









$endgroup$











  • $begingroup$
    Is it convergent? I got the product to be $$frac 3^5 cdot 5^9 cdot 7^13 cdots 2^3 cdot 4^7 cdot 6^11 cdots$$ which is definitely divergent.
    $endgroup$
    – Dbchatto67
    Mar 14 at 7:32











  • $begingroup$
    There are two limits possible, please see my answer.
    $endgroup$
    – user90369
    Mar 14 at 16:51













3












3








3





$begingroup$


I am looking for the closed form of this product.
$$prod_n=1^inftyleft(fracnn+1right)^(-1)^n-1n$$



I have sees it somewhere before but I can't remember it closed form. I remember the Glaisher's constant it is invloved alone with $2^7/6$ and maybe e (exponential function constant) also.



Does anyone knows it closed form?










share|cite|improve this question









$endgroup$




I am looking for the closed form of this product.
$$prod_n=1^inftyleft(fracnn+1right)^(-1)^n-1n$$



I have sees it somewhere before but I can't remember it closed form. I remember the Glaisher's constant it is invloved alone with $2^7/6$ and maybe e (exponential function constant) also.



Does anyone knows it closed form?







infinite-product






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 14 at 6:56









coffeeecoffeee

14518




14518











  • $begingroup$
    Is it convergent? I got the product to be $$frac 3^5 cdot 5^9 cdot 7^13 cdots 2^3 cdot 4^7 cdot 6^11 cdots$$ which is definitely divergent.
    $endgroup$
    – Dbchatto67
    Mar 14 at 7:32











  • $begingroup$
    There are two limits possible, please see my answer.
    $endgroup$
    – user90369
    Mar 14 at 16:51
















  • $begingroup$
    Is it convergent? I got the product to be $$frac 3^5 cdot 5^9 cdot 7^13 cdots 2^3 cdot 4^7 cdot 6^11 cdots$$ which is definitely divergent.
    $endgroup$
    – Dbchatto67
    Mar 14 at 7:32











  • $begingroup$
    There are two limits possible, please see my answer.
    $endgroup$
    – user90369
    Mar 14 at 16:51















$begingroup$
Is it convergent? I got the product to be $$frac 3^5 cdot 5^9 cdot 7^13 cdots 2^3 cdot 4^7 cdot 6^11 cdots$$ which is definitely divergent.
$endgroup$
– Dbchatto67
Mar 14 at 7:32





$begingroup$
Is it convergent? I got the product to be $$frac 3^5 cdot 5^9 cdot 7^13 cdots 2^3 cdot 4^7 cdot 6^11 cdots$$ which is definitely divergent.
$endgroup$
– Dbchatto67
Mar 14 at 7:32













$begingroup$
There are two limits possible, please see my answer.
$endgroup$
– user90369
Mar 14 at 16:51




$begingroup$
There are two limits possible, please see my answer.
$endgroup$
– user90369
Mar 14 at 16:51










2 Answers
2






active

oldest

votes


















1












$begingroup$

$displaystyle 1/prodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = frac1sqrt2 left( frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^4 left( frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1 $



$displaystyle limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n = limlimits_Ntoinftyfrace^N N^-1/2 prodlimits_n=1^Nleft(1+frac1nright)^n = fracsqrt2pieenspaceenspace$ (e.g. by the Stirling formula)



The first calculation formula of Glaisher for the constant named after him (but written here more compact with products instead of series) is:




$$A=2^1/36pi^1/6left( limlimits_Ntoinfty frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^2/3left( limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1/3$$




(see Glaisher page 46 formula (7))



We potentiate this equation of Glaisher on both sides with 6 and multiply one time the left side with $fracsqrt2pie$ and the right with it’s product. After a few simple elementary conversions follows:



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2eA^-6 approx 1.2157517513…$



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2N+1left(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2A^-6 approx 0.44725…$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thank you for showing the full answer
    $endgroup$
    – coffeee
    Mar 15 at 20:31










  • $begingroup$
    @coffeee : You are welcome, it was a pleasure. ;)
    $endgroup$
    – user90369
    Mar 15 at 22:26


















2












$begingroup$

Let $$a_n=left(fracnn+1right)^(-1)^n-1 n$$ then
$$a_2p= left(frac2p2 p+1right)^-2 pqquad textandqquad a_2p+1=left(frac2 p+12 p+2right)^2 p+1$$
Now, using a CAS,
$$prod_p=1^m a_2p=fracsqrt[12]2 sqrtpi exp left(-2 zeta ^(1,0)(-1,m+1)+2 zeta
^(1,0)left(-1,m+frac32right)+frac14right)A^3 ,Gamma
left(m+frac32right)$$

$$prod_p=1^m a_2p+1=frac2 sqrt[12]2 Gamma (m+2) exp left(2 zeta
^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac14right)A^3$$

$$b_m=frac 12prod_p=1^m a_2pprod_p=1^m a_2p+1$$ $$b_m=frac2^frac 16sqrtpi Gamma (m+2) exp left(-2 zeta ^(1,0)(-1,m+1)+4
zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac12right)A^6 ,Gamma left(m+frac32right)$$

$$b_m=frac2^frac 16 sqrtpi , Gamma (m+2)A^4 ,H(m)^2,Gamma
left(m+frac32right)exp left(4 zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac13right)$$
where appears the hyperfactorial function.



Taking logarithms and using Stirling like approximations and then continuing with Taylor expansions using $b_m=e^log(b_m)$



$$b_m=frac2^frac 16 sqrt piA^6left(1+frac18 m-frac49384 m^2+frac1271024 m^3+Oleft(frac1m^4right) right)$$



$$colorbluelim_mto infty , b_m=frac2^frac 16 sqrt piA^6$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you for the answer @Claude Leibovic
    $endgroup$
    – coffeee
    Mar 14 at 10:16










  • $begingroup$
    @coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 10:22











  • $begingroup$
    @coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 14:42











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147649%2fclosed-form-of-prod-n-1-infty-left-fracnn1-right-1n-1n%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$displaystyle 1/prodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = frac1sqrt2 left( frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^4 left( frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1 $



$displaystyle limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n = limlimits_Ntoinftyfrace^N N^-1/2 prodlimits_n=1^Nleft(1+frac1nright)^n = fracsqrt2pieenspaceenspace$ (e.g. by the Stirling formula)



The first calculation formula of Glaisher for the constant named after him (but written here more compact with products instead of series) is:




$$A=2^1/36pi^1/6left( limlimits_Ntoinfty frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^2/3left( limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1/3$$




(see Glaisher page 46 formula (7))



We potentiate this equation of Glaisher on both sides with 6 and multiply one time the left side with $fracsqrt2pie$ and the right with it’s product. After a few simple elementary conversions follows:



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2eA^-6 approx 1.2157517513…$



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2N+1left(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2A^-6 approx 0.44725…$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thank you for showing the full answer
    $endgroup$
    – coffeee
    Mar 15 at 20:31










  • $begingroup$
    @coffeee : You are welcome, it was a pleasure. ;)
    $endgroup$
    – user90369
    Mar 15 at 22:26















1












$begingroup$

$displaystyle 1/prodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = frac1sqrt2 left( frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^4 left( frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1 $



$displaystyle limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n = limlimits_Ntoinftyfrace^N N^-1/2 prodlimits_n=1^Nleft(1+frac1nright)^n = fracsqrt2pieenspaceenspace$ (e.g. by the Stirling formula)



The first calculation formula of Glaisher for the constant named after him (but written here more compact with products instead of series) is:




$$A=2^1/36pi^1/6left( limlimits_Ntoinfty frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^2/3left( limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1/3$$




(see Glaisher page 46 formula (7))



We potentiate this equation of Glaisher on both sides with 6 and multiply one time the left side with $fracsqrt2pie$ and the right with it’s product. After a few simple elementary conversions follows:



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2eA^-6 approx 1.2157517513…$



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2N+1left(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2A^-6 approx 0.44725…$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thank you for showing the full answer
    $endgroup$
    – coffeee
    Mar 15 at 20:31










  • $begingroup$
    @coffeee : You are welcome, it was a pleasure. ;)
    $endgroup$
    – user90369
    Mar 15 at 22:26













1












1








1





$begingroup$

$displaystyle 1/prodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = frac1sqrt2 left( frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^4 left( frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1 $



$displaystyle limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n = limlimits_Ntoinftyfrace^N N^-1/2 prodlimits_n=1^Nleft(1+frac1nright)^n = fracsqrt2pieenspaceenspace$ (e.g. by the Stirling formula)



The first calculation formula of Glaisher for the constant named after him (but written here more compact with products instead of series) is:




$$A=2^1/36pi^1/6left( limlimits_Ntoinfty frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^2/3left( limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1/3$$




(see Glaisher page 46 formula (7))



We potentiate this equation of Glaisher on both sides with 6 and multiply one time the left side with $fracsqrt2pie$ and the right with it’s product. After a few simple elementary conversions follows:



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2eA^-6 approx 1.2157517513…$



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2N+1left(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2A^-6 approx 0.44725…$






share|cite|improve this answer











$endgroup$



$displaystyle 1/prodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = frac1sqrt2 left( frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^4 left( frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1 $



$displaystyle limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n = limlimits_Ntoinftyfrace^N N^-1/2 prodlimits_n=1^Nleft(1+frac1nright)^n = fracsqrt2pieenspaceenspace$ (e.g. by the Stirling formula)



The first calculation formula of Glaisher for the constant named after him (but written here more compact with products instead of series) is:




$$A=2^1/36pi^1/6left( limlimits_Ntoinfty frace^N/2N^-1/8 prodlimits_n=1^Nleft(1+frac12nright)^n
right)^2/3left( limlimits_Ntoinfty frace^2N(2N)^-1/2 prodlimits_n=1^2Nleft(1+frac1nright)^n right)^-1/3$$




(see Glaisher page 46 formula (7))



We potentiate this equation of Glaisher on both sides with 6 and multiply one time the left side with $fracsqrt2pie$ and the right with it’s product. After a few simple elementary conversions follows:



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2Nleft(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2eA^-6 approx 1.2157517513…$



$displaystyle limlimits_Ntoinftyprodlimits_n=1^2N+1left(fracnn+1right)^(-1)^n-1n = 2^1/6pi^1/2A^-6 approx 0.44725…$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 14 at 18:42

























answered Mar 14 at 16:08









user90369user90369

8,475925




8,475925











  • $begingroup$
    thank you for showing the full answer
    $endgroup$
    – coffeee
    Mar 15 at 20:31










  • $begingroup$
    @coffeee : You are welcome, it was a pleasure. ;)
    $endgroup$
    – user90369
    Mar 15 at 22:26
















  • $begingroup$
    thank you for showing the full answer
    $endgroup$
    – coffeee
    Mar 15 at 20:31










  • $begingroup$
    @coffeee : You are welcome, it was a pleasure. ;)
    $endgroup$
    – user90369
    Mar 15 at 22:26















$begingroup$
thank you for showing the full answer
$endgroup$
– coffeee
Mar 15 at 20:31




$begingroup$
thank you for showing the full answer
$endgroup$
– coffeee
Mar 15 at 20:31












$begingroup$
@coffeee : You are welcome, it was a pleasure. ;)
$endgroup$
– user90369
Mar 15 at 22:26




$begingroup$
@coffeee : You are welcome, it was a pleasure. ;)
$endgroup$
– user90369
Mar 15 at 22:26











2












$begingroup$

Let $$a_n=left(fracnn+1right)^(-1)^n-1 n$$ then
$$a_2p= left(frac2p2 p+1right)^-2 pqquad textandqquad a_2p+1=left(frac2 p+12 p+2right)^2 p+1$$
Now, using a CAS,
$$prod_p=1^m a_2p=fracsqrt[12]2 sqrtpi exp left(-2 zeta ^(1,0)(-1,m+1)+2 zeta
^(1,0)left(-1,m+frac32right)+frac14right)A^3 ,Gamma
left(m+frac32right)$$

$$prod_p=1^m a_2p+1=frac2 sqrt[12]2 Gamma (m+2) exp left(2 zeta
^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac14right)A^3$$

$$b_m=frac 12prod_p=1^m a_2pprod_p=1^m a_2p+1$$ $$b_m=frac2^frac 16sqrtpi Gamma (m+2) exp left(-2 zeta ^(1,0)(-1,m+1)+4
zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac12right)A^6 ,Gamma left(m+frac32right)$$

$$b_m=frac2^frac 16 sqrtpi , Gamma (m+2)A^4 ,H(m)^2,Gamma
left(m+frac32right)exp left(4 zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac13right)$$
where appears the hyperfactorial function.



Taking logarithms and using Stirling like approximations and then continuing with Taylor expansions using $b_m=e^log(b_m)$



$$b_m=frac2^frac 16 sqrt piA^6left(1+frac18 m-frac49384 m^2+frac1271024 m^3+Oleft(frac1m^4right) right)$$



$$colorbluelim_mto infty , b_m=frac2^frac 16 sqrt piA^6$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you for the answer @Claude Leibovic
    $endgroup$
    – coffeee
    Mar 14 at 10:16










  • $begingroup$
    @coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 10:22











  • $begingroup$
    @coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 14:42
















2












$begingroup$

Let $$a_n=left(fracnn+1right)^(-1)^n-1 n$$ then
$$a_2p= left(frac2p2 p+1right)^-2 pqquad textandqquad a_2p+1=left(frac2 p+12 p+2right)^2 p+1$$
Now, using a CAS,
$$prod_p=1^m a_2p=fracsqrt[12]2 sqrtpi exp left(-2 zeta ^(1,0)(-1,m+1)+2 zeta
^(1,0)left(-1,m+frac32right)+frac14right)A^3 ,Gamma
left(m+frac32right)$$

$$prod_p=1^m a_2p+1=frac2 sqrt[12]2 Gamma (m+2) exp left(2 zeta
^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac14right)A^3$$

$$b_m=frac 12prod_p=1^m a_2pprod_p=1^m a_2p+1$$ $$b_m=frac2^frac 16sqrtpi Gamma (m+2) exp left(-2 zeta ^(1,0)(-1,m+1)+4
zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac12right)A^6 ,Gamma left(m+frac32right)$$

$$b_m=frac2^frac 16 sqrtpi , Gamma (m+2)A^4 ,H(m)^2,Gamma
left(m+frac32right)exp left(4 zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac13right)$$
where appears the hyperfactorial function.



Taking logarithms and using Stirling like approximations and then continuing with Taylor expansions using $b_m=e^log(b_m)$



$$b_m=frac2^frac 16 sqrt piA^6left(1+frac18 m-frac49384 m^2+frac1271024 m^3+Oleft(frac1m^4right) right)$$



$$colorbluelim_mto infty , b_m=frac2^frac 16 sqrt piA^6$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thank you for the answer @Claude Leibovic
    $endgroup$
    – coffeee
    Mar 14 at 10:16










  • $begingroup$
    @coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 10:22











  • $begingroup$
    @coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 14:42














2












2








2





$begingroup$

Let $$a_n=left(fracnn+1right)^(-1)^n-1 n$$ then
$$a_2p= left(frac2p2 p+1right)^-2 pqquad textandqquad a_2p+1=left(frac2 p+12 p+2right)^2 p+1$$
Now, using a CAS,
$$prod_p=1^m a_2p=fracsqrt[12]2 sqrtpi exp left(-2 zeta ^(1,0)(-1,m+1)+2 zeta
^(1,0)left(-1,m+frac32right)+frac14right)A^3 ,Gamma
left(m+frac32right)$$

$$prod_p=1^m a_2p+1=frac2 sqrt[12]2 Gamma (m+2) exp left(2 zeta
^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac14right)A^3$$

$$b_m=frac 12prod_p=1^m a_2pprod_p=1^m a_2p+1$$ $$b_m=frac2^frac 16sqrtpi Gamma (m+2) exp left(-2 zeta ^(1,0)(-1,m+1)+4
zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac12right)A^6 ,Gamma left(m+frac32right)$$

$$b_m=frac2^frac 16 sqrtpi , Gamma (m+2)A^4 ,H(m)^2,Gamma
left(m+frac32right)exp left(4 zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac13right)$$
where appears the hyperfactorial function.



Taking logarithms and using Stirling like approximations and then continuing with Taylor expansions using $b_m=e^log(b_m)$



$$b_m=frac2^frac 16 sqrt piA^6left(1+frac18 m-frac49384 m^2+frac1271024 m^3+Oleft(frac1m^4right) right)$$



$$colorbluelim_mto infty , b_m=frac2^frac 16 sqrt piA^6$$






share|cite|improve this answer











$endgroup$



Let $$a_n=left(fracnn+1right)^(-1)^n-1 n$$ then
$$a_2p= left(frac2p2 p+1right)^-2 pqquad textandqquad a_2p+1=left(frac2 p+12 p+2right)^2 p+1$$
Now, using a CAS,
$$prod_p=1^m a_2p=fracsqrt[12]2 sqrtpi exp left(-2 zeta ^(1,0)(-1,m+1)+2 zeta
^(1,0)left(-1,m+frac32right)+frac14right)A^3 ,Gamma
left(m+frac32right)$$

$$prod_p=1^m a_2p+1=frac2 sqrt[12]2 Gamma (m+2) exp left(2 zeta
^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac14right)A^3$$

$$b_m=frac 12prod_p=1^m a_2pprod_p=1^m a_2p+1$$ $$b_m=frac2^frac 16sqrtpi Gamma (m+2) exp left(-2 zeta ^(1,0)(-1,m+1)+4
zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac12right)A^6 ,Gamma left(m+frac32right)$$

$$b_m=frac2^frac 16 sqrtpi , Gamma (m+2)A^4 ,H(m)^2,Gamma
left(m+frac32right)exp left(4 zeta ^(1,0)left(-1,m+frac32right)-2 zeta
^(1,0)(-1,m+2)+frac13right)$$
where appears the hyperfactorial function.



Taking logarithms and using Stirling like approximations and then continuing with Taylor expansions using $b_m=e^log(b_m)$



$$b_m=frac2^frac 16 sqrt piA^6left(1+frac18 m-frac49384 m^2+frac1271024 m^3+Oleft(frac1m^4right) right)$$



$$colorbluelim_mto infty , b_m=frac2^frac 16 sqrt piA^6$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 15 at 3:44

























answered Mar 14 at 8:43









Claude LeiboviciClaude Leibovici

124k1158135




124k1158135











  • $begingroup$
    Thank you for the answer @Claude Leibovic
    $endgroup$
    – coffeee
    Mar 14 at 10:16










  • $begingroup$
    @coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 10:22











  • $begingroup$
    @coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 14:42

















  • $begingroup$
    Thank you for the answer @Claude Leibovic
    $endgroup$
    – coffeee
    Mar 14 at 10:16










  • $begingroup$
    @coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 10:22











  • $begingroup$
    @coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
    $endgroup$
    – Claude Leibovici
    Mar 14 at 14:42
















$begingroup$
Thank you for the answer @Claude Leibovic
$endgroup$
– coffeee
Mar 14 at 10:16




$begingroup$
Thank you for the answer @Claude Leibovic
$endgroup$
– coffeee
Mar 14 at 10:16












$begingroup$
@coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
$endgroup$
– Claude Leibovici
Mar 14 at 10:22





$begingroup$
@coffeee. You are very welcome ! Using Wolfram Alpha, type product of ((1 + 2*p)/(2 + 2*p))^(1 + 2*p)/(2^(2*p)*(p/(1 + 2*p))^(2*p)) from p=1 to infinity and you will get the result.
$endgroup$
– Claude Leibovici
Mar 14 at 10:22













$begingroup$
@coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
$endgroup$
– Claude Leibovici
Mar 14 at 14:42





$begingroup$
@coffeee. Take care : I could be wrong by a factor of two since I used $b_m=prod_p=1^m a_2pprod_p=1^m a_2p+1$ instead of $b_m=prod_p=1^m a_2pprod_p=colorred0^m a_2p+1$. I need to check again tomorrow morning.
$endgroup$
– Claude Leibovici
Mar 14 at 14:42


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147649%2fclosed-form-of-prod-n-1-infty-left-fracnn1-right-1n-1n%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers