Is vector field a field (in the algebraic sense) also?Representing a vector field locallyWhen is a gradient vector field also an algebraic field?Extension of Vector field along a curve always exists?Reconstruct a smooth vector field from direction field (Arnold's ODE)Vector fields as rank 1 contravariant tensor fieldsOutward-pointing vector field on Projective spaceSmooth extension of a coordinate vector fieldHow can a vector field eat a smooth function?Intuition of a smooth vector fieldFinding an explicit formula for a Hamiltonian vector field

Multi tool use
Multi tool use

Ways of geometrical multiplication

Limit max CPU usage SQL SERVER with WSRM

How to make money from a browser who sees 5 seconds into the future of any web page?

PTIJ: Which Dr. Seuss books should one obtain?

What should be the ideal length of sentences in a blog post for ease of reading?

How do I Interface a PS/2 Keyboard without Modern Techniques?

How much do grades matter for a future academia position?

Does Doodling or Improvising on the Piano Have Any Benefits?

Is there a RAID 0 Equivalent for RAM?

Why Shazam when there is already Superman?

Personal or impersonal in a technical resume

Why didn’t Eve recognize the little cockroach as a living organism?

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?

Given this phrasing in the lease, when should I pay my rent?

Pre-Employment Background Check With Consent For Future Checks

Do I have to know the General Relativity theory to understand the concept of inertial frame?

Why didn't Voldemort know what Grindelwald looked like?

Why do Radio Buttons not fill the entire outer circle?

Why is the Sun approximated as a black body at ~ 5800 K?

Alignment of six matrices

Giving feedback to someone without sounding prejudiced

Mimic lecturing on blackboard, facing audience

Isometric embedding of a genus g surface



Is vector field a field (in the algebraic sense) also?


Representing a vector field locallyWhen is a gradient vector field also an algebraic field?Extension of Vector field along a curve always exists?Reconstruct a smooth vector field from direction field (Arnold's ODE)Vector fields as rank 1 contravariant tensor fieldsOutward-pointing vector field on Projective spaceSmooth extension of a coordinate vector fieldHow can a vector field eat a smooth function?Intuition of a smooth vector fieldFinding an explicit formula for a Hamiltonian vector field













3












$begingroup$


This is something about basic confusion.



Let $M$ be a smooth manifold of dimension $n$.



We denote $X$ to mean the vector field.




Is the vector field $X$, a field (in the sense of abstract algebra) also?











share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    This is something about basic confusion.



    Let $M$ be a smooth manifold of dimension $n$.



    We denote $X$ to mean the vector field.




    Is the vector field $X$, a field (in the sense of abstract algebra) also?











    share|cite|improve this question











    $endgroup$














      3












      3








      3


      1



      $begingroup$


      This is something about basic confusion.



      Let $M$ be a smooth manifold of dimension $n$.



      We denote $X$ to mean the vector field.




      Is the vector field $X$, a field (in the sense of abstract algebra) also?











      share|cite|improve this question











      $endgroup$




      This is something about basic confusion.



      Let $M$ be a smooth manifold of dimension $n$.



      We denote $X$ to mean the vector field.




      Is the vector field $X$, a field (in the sense of abstract algebra) also?








      vector-fields






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 14 at 11:19









      Asaf Karagila

      306k33438769




      306k33438769










      asked Mar 14 at 8:31









      M. A. SARKARM. A. SARKAR

      2,3991819




      2,3991819




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          A single vector field is simply a choice of vector for each point in the plane. It doesn't have "elements" in any sensible way, and especially not elements one can add or multiply.



          The collection $mathscr X$ of all vector fields on $M$ (or all continuous vector fields, or all smooth vector fields) certainly has algebraic structure, as they can be added, and they can be multiplied by (real or complex) scalars. We call such a structure a module (in this case it isn't wrong to call $mathscr X$ a vector space either). But vector fields cannot in any sensible way be multiplied with one another, so such a set cannot be a ring, and therefore cannot be a field.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            A module over a field is a vector space. Why call it "module" then?
            $endgroup$
            – enedil
            Mar 14 at 8:57











          • $begingroup$
            @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
            $endgroup$
            – Arthur
            Mar 14 at 9:01











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147718%2fis-vector-field-a-field-in-the-algebraic-sense-also%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          A single vector field is simply a choice of vector for each point in the plane. It doesn't have "elements" in any sensible way, and especially not elements one can add or multiply.



          The collection $mathscr X$ of all vector fields on $M$ (or all continuous vector fields, or all smooth vector fields) certainly has algebraic structure, as they can be added, and they can be multiplied by (real or complex) scalars. We call such a structure a module (in this case it isn't wrong to call $mathscr X$ a vector space either). But vector fields cannot in any sensible way be multiplied with one another, so such a set cannot be a ring, and therefore cannot be a field.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            A module over a field is a vector space. Why call it "module" then?
            $endgroup$
            – enedil
            Mar 14 at 8:57











          • $begingroup$
            @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
            $endgroup$
            – Arthur
            Mar 14 at 9:01
















          5












          $begingroup$

          A single vector field is simply a choice of vector for each point in the plane. It doesn't have "elements" in any sensible way, and especially not elements one can add or multiply.



          The collection $mathscr X$ of all vector fields on $M$ (or all continuous vector fields, or all smooth vector fields) certainly has algebraic structure, as they can be added, and they can be multiplied by (real or complex) scalars. We call such a structure a module (in this case it isn't wrong to call $mathscr X$ a vector space either). But vector fields cannot in any sensible way be multiplied with one another, so such a set cannot be a ring, and therefore cannot be a field.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            A module over a field is a vector space. Why call it "module" then?
            $endgroup$
            – enedil
            Mar 14 at 8:57











          • $begingroup$
            @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
            $endgroup$
            – Arthur
            Mar 14 at 9:01














          5












          5








          5





          $begingroup$

          A single vector field is simply a choice of vector for each point in the plane. It doesn't have "elements" in any sensible way, and especially not elements one can add or multiply.



          The collection $mathscr X$ of all vector fields on $M$ (or all continuous vector fields, or all smooth vector fields) certainly has algebraic structure, as they can be added, and they can be multiplied by (real or complex) scalars. We call such a structure a module (in this case it isn't wrong to call $mathscr X$ a vector space either). But vector fields cannot in any sensible way be multiplied with one another, so such a set cannot be a ring, and therefore cannot be a field.






          share|cite|improve this answer









          $endgroup$



          A single vector field is simply a choice of vector for each point in the plane. It doesn't have "elements" in any sensible way, and especially not elements one can add or multiply.



          The collection $mathscr X$ of all vector fields on $M$ (or all continuous vector fields, or all smooth vector fields) certainly has algebraic structure, as they can be added, and they can be multiplied by (real or complex) scalars. We call such a structure a module (in this case it isn't wrong to call $mathscr X$ a vector space either). But vector fields cannot in any sensible way be multiplied with one another, so such a set cannot be a ring, and therefore cannot be a field.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 14 at 8:34









          ArthurArthur

          119k7118202




          119k7118202











          • $begingroup$
            A module over a field is a vector space. Why call it "module" then?
            $endgroup$
            – enedil
            Mar 14 at 8:57











          • $begingroup$
            @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
            $endgroup$
            – Arthur
            Mar 14 at 9:01

















          • $begingroup$
            A module over a field is a vector space. Why call it "module" then?
            $endgroup$
            – enedil
            Mar 14 at 8:57











          • $begingroup$
            @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
            $endgroup$
            – Arthur
            Mar 14 at 9:01
















          $begingroup$
          A module over a field is a vector space. Why call it "module" then?
          $endgroup$
          – enedil
          Mar 14 at 8:57





          $begingroup$
          A module over a field is a vector space. Why call it "module" then?
          $endgroup$
          – enedil
          Mar 14 at 8:57













          $begingroup$
          @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
          $endgroup$
          – Arthur
          Mar 14 at 9:01





          $begingroup$
          @enedil Because once we get to this stage, the word "vector" is already in heavy use. Having one more thing called a "vector space" and an entirely new set of "vectors" to keep track of as we're working will not help. Also, it's convention. And as you say, it is exactly the same thing in this case, so we don't lose anything.
          $endgroup$
          – Arthur
          Mar 14 at 9:01


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147718%2fis-vector-field-a-field-in-the-algebraic-sense-also%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          7Pi7 EFTJho039yNNgE6UePMVc iqn162n isQxAB2L,Z5U,DdwayRs7d,R
          BOmwhJ3D8jMfYRQYh1Yy4BmN54iHTKk

          Popular posts from this blog

          Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee