Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$Show that $lim_nrightarrow infty int_0^pi/2 2^n sqrtn sin^n(x) cos^n-2(x) ; dx = sqrt2pi$The value of $lim_nto inftyint_-infty^inftyf(x)cos^2 nx dx.$Show that $lim_t rightarrow infty tF(t) = 0.$Calculate $lim_nrightarrow infty int_-infty^inftyfrac11+fracx^4ndx$ if it exists.Calculate $lim_epsilon rightarrow 01over epsilon^2cdotbiggl( 1-1over2int_-1^1sqrtdt biggl)$Show that $lim_nrightarrow inftyint_a^pi/2sqrtn cos^n(x)dx=0$ for any $ain left(0,fracpi2right)$Find $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)$ and $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)-frac12ln(n)$.Find $lim_nrightarrowinftyint_2npi^2(n+1)pixln xcos x,dx$Show that $lim_nrightarrowinfty int_n^n+1fleft(fracx(n!)^frac1nright)dx=f(e)$

Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?

Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?

Grepping string, but include all non-blank lines following each grep match

How much do grades matter for a future academia position?

Does the Crossbow Expert feat's extra crossbow attack work with the reaction attack from a Hunter ranger's Giant Killer feature?

How do I Interface a PS/2 Keyboard without Modern Techniques?

How do you justify more code being written by following clean code practices?

Do I have to take mana from my deck or hand when tapping a dual land?

Usage of an old photo with expired copyright

What (the heck) is a Super Worm Equinox Moon?

Why would five hundred and five be same as one?

Why didn't Voldemort know what Grindelwald looked like?

Do people actually use the word "kaputt" in conversation?

Is there a reason to prefer HFS+ over APFS for disk images in High Sierra and/or Mojave?

How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?

If the only attacker is removed from combat, is a creature still counted as having attacked this turn?

Why is the principal energy of an electron lower for excited electrons in a higher energy state?

Showing mass murder in a kid's book

Check if object is null and return null

Echo with obfuscation

Would this string work as string?

How would you translate "more" for use as an interface button?

How do I prevent inappropriate ads from appearing in my game?

How to leave product feedback on macOS?



Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$


Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$Show that $lim_nrightarrow infty int_0^pi/2 2^n sqrtn sin^n(x) cos^n-2(x) ; dx = sqrt2pi$The value of $lim_nto inftyint_-infty^inftyf(x)cos^2 nx dx.$Show that $lim_t rightarrow infty tF(t) = 0.$Calculate $lim_nrightarrow infty int_-infty^inftyfrac11+fracx^4ndx$ if it exists.Calculate $lim_epsilon rightarrow 01over epsilon^2cdotbiggl( 1-1over2int_-1^1sqrtdt biggl)$Show that $lim_nrightarrow inftyint_a^pi/2sqrtn cos^n(x)dx=0$ for any $ain left(0,fracpi2right)$Find $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)$ and $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)-frac12ln(n)$.Find $lim_nrightarrowinftyint_2npi^2(n+1)pixln xcos x,dx$Show that $lim_nrightarrowinfty int_n^n+1fleft(fracx(n!)^frac1nright)dx=f(e)$













5












$begingroup$


Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03
















5












$begingroup$


Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03














5












5








5


1



$begingroup$


Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?










share|cite|improve this question











$endgroup$




Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?







calculus integration limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 14 at 9:06









Bernard

123k741117




123k741117










asked Mar 14 at 8:51







user651692














  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03













  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03








1




1




$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03





$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03











4 Answers
4






active

oldest

votes


















5












$begingroup$

The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






share|cite|improve this answer











$endgroup$




















    5












    $begingroup$

    beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
    Perform the change of variable $y=sqrtx$



    beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
    &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
    &=int_0^infty frac21+x^2,dx\
    &=2Big[arctan xBig]_0^infty\
    &=pi
    endalign



    NB:
    beginalignint_0^infty fracln x1+x^2,dx=0endalign



    (perform the change of variable $y=frac1x$ )






    share|cite|improve this answer









    $endgroup$




















      3












      $begingroup$

      Hint:



      You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
      $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
      Now you get rid of the log with an integration by parts, setting
      $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
      This last integral is classically obtained from
      $$arctan t=intfracmathrm d t1+t^2$$
      integrating the latter by parts (again!).






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        @BarryCipra: Fixed. Thank you for pointing it!
        $endgroup$
        – Bernard
        Mar 14 at 10:12


















      2












      $begingroup$

      Let $x=tan^2theta$ and then
      begineqnarray*
      I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
      &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
      &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
      &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
      &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
      endeqnarray*

      Here
      $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
      is used. Integration by parts gives
      $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






      share|cite|improve this answer











      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147735%2fshow-that-lim-n-rightarrow-infty-int-0n-frac-sqrt-x-ln-x1x2-dx%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown
























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






        share|cite|improve this answer











        $endgroup$

















          5












          $begingroup$

          The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






          share|cite|improve this answer











          $endgroup$















            5












            5








            5





            $begingroup$

            The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






            share|cite|improve this answer











            $endgroup$



            The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Mar 14 at 9:11

























            answered Mar 14 at 9:01









            J.G.J.G.

            30.9k23149




            30.9k23149





















                5












                $begingroup$

                beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                Perform the change of variable $y=sqrtx$



                beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                &=int_0^infty frac21+x^2,dx\
                &=2Big[arctan xBig]_0^infty\
                &=pi
                endalign



                NB:
                beginalignint_0^infty fracln x1+x^2,dx=0endalign



                (perform the change of variable $y=frac1x$ )






                share|cite|improve this answer









                $endgroup$

















                  5












                  $begingroup$

                  beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                  Perform the change of variable $y=sqrtx$



                  beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                  &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                  &=int_0^infty frac21+x^2,dx\
                  &=2Big[arctan xBig]_0^infty\
                  &=pi
                  endalign



                  NB:
                  beginalignint_0^infty fracln x1+x^2,dx=0endalign



                  (perform the change of variable $y=frac1x$ )






                  share|cite|improve this answer









                  $endgroup$















                    5












                    5








                    5





                    $begingroup$

                    beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                    Perform the change of variable $y=sqrtx$



                    beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                    &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                    &=int_0^infty frac21+x^2,dx\
                    &=2Big[arctan xBig]_0^infty\
                    &=pi
                    endalign



                    NB:
                    beginalignint_0^infty fracln x1+x^2,dx=0endalign



                    (perform the change of variable $y=frac1x$ )






                    share|cite|improve this answer









                    $endgroup$



                    beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                    Perform the change of variable $y=sqrtx$



                    beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                    &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                    &=int_0^infty frac21+x^2,dx\
                    &=2Big[arctan xBig]_0^infty\
                    &=pi
                    endalign



                    NB:
                    beginalignint_0^infty fracln x1+x^2,dx=0endalign



                    (perform the change of variable $y=frac1x$ )







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 14 at 9:35









                    FDPFDP

                    6,17211829




                    6,17211829





















                        3












                        $begingroup$

                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12















                        3












                        $begingroup$

                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12













                        3












                        3








                        3





                        $begingroup$

                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).






                        share|cite|improve this answer











                        $endgroup$



                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Mar 14 at 10:11

























                        answered Mar 14 at 9:21









                        BernardBernard

                        123k741117




                        123k741117











                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12
















                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12















                        $begingroup$
                        @BarryCipra: Fixed. Thank you for pointing it!
                        $endgroup$
                        – Bernard
                        Mar 14 at 10:12




                        $begingroup$
                        @BarryCipra: Fixed. Thank you for pointing it!
                        $endgroup$
                        – Bernard
                        Mar 14 at 10:12











                        2












                        $begingroup$

                        Let $x=tan^2theta$ and then
                        begineqnarray*
                        I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                        &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                        &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                        &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                        &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                        endeqnarray*

                        Here
                        $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                        is used. Integration by parts gives
                        $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






                        share|cite|improve this answer











                        $endgroup$

















                          2












                          $begingroup$

                          Let $x=tan^2theta$ and then
                          begineqnarray*
                          I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                          &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                          &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                          &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                          &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                          endeqnarray*

                          Here
                          $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                          is used. Integration by parts gives
                          $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






                          share|cite|improve this answer











                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            Let $x=tan^2theta$ and then
                            begineqnarray*
                            I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                            &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                            &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                            &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                            &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                            endeqnarray*

                            Here
                            $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                            is used. Integration by parts gives
                            $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






                            share|cite|improve this answer











                            $endgroup$



                            Let $x=tan^2theta$ and then
                            begineqnarray*
                            I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                            &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                            &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                            &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                            &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                            endeqnarray*

                            Here
                            $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                            is used. Integration by parts gives
                            $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Mar 14 at 20:21

























                            answered Mar 14 at 14:52









                            xpaulxpaul

                            23.3k24655




                            23.3k24655



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147735%2fshow-that-lim-n-rightarrow-infty-int-0n-frac-sqrt-x-ln-x1x2-dx%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                                Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                                Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers