Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$Show that $lim_nrightarrow infty int_0^pi/2 2^n sqrtn sin^n(x) cos^n-2(x) ; dx = sqrt2pi$The value of $lim_nto inftyint_-infty^inftyf(x)cos^2 nx dx.$Show that $lim_t rightarrow infty tF(t) = 0.$Calculate $lim_nrightarrow infty int_-infty^inftyfrac11+fracx^4ndx$ if it exists.Calculate $lim_epsilon rightarrow 01over epsilon^2cdotbiggl( 1-1over2int_-1^1sqrtdt biggl)$Show that $lim_nrightarrow inftyint_a^pi/2sqrtn cos^n(x)dx=0$ for any $ain left(0,fracpi2right)$Find $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)$ and $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)-frac12ln(n)$.Find $lim_nrightarrowinftyint_2npi^2(n+1)pixln xcos x,dx$Show that $lim_nrightarrowinfty int_n^n+1fleft(fracx(n!)^frac1nright)dx=f(e)$

Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?

Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?

Grepping string, but include all non-blank lines following each grep match

How much do grades matter for a future academia position?

Does the Crossbow Expert feat's extra crossbow attack work with the reaction attack from a Hunter ranger's Giant Killer feature?

How do I Interface a PS/2 Keyboard without Modern Techniques?

How do you justify more code being written by following clean code practices?

Do I have to take mana from my deck or hand when tapping a dual land?

Usage of an old photo with expired copyright

What (the heck) is a Super Worm Equinox Moon?

Why would five hundred and five be same as one?

Why didn't Voldemort know what Grindelwald looked like?

Do people actually use the word "kaputt" in conversation?

Is there a reason to prefer HFS+ over APFS for disk images in High Sierra and/or Mojave?

How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?

If the only attacker is removed from combat, is a creature still counted as having attacked this turn?

Why is the principal energy of an electron lower for excited electrons in a higher energy state?

Showing mass murder in a kid's book

Check if object is null and return null

Echo with obfuscation

Would this string work as string?

How would you translate "more" for use as an interface button?

How do I prevent inappropriate ads from appearing in my game?

How to leave product feedback on macOS?



Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$


Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$Show that $lim_nrightarrow infty int_0^pi/2 2^n sqrtn sin^n(x) cos^n-2(x) ; dx = sqrt2pi$The value of $lim_nto inftyint_-infty^inftyf(x)cos^2 nx dx.$Show that $lim_t rightarrow infty tF(t) = 0.$Calculate $lim_nrightarrow infty int_-infty^inftyfrac11+fracx^4ndx$ if it exists.Calculate $lim_epsilon rightarrow 01over epsilon^2cdotbiggl( 1-1over2int_-1^1sqrtdt biggl)$Show that $lim_nrightarrow inftyint_a^pi/2sqrtn cos^n(x)dx=0$ for any $ain left(0,fracpi2right)$Find $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)$ and $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)-frac12ln(n)$.Find $lim_nrightarrowinftyint_2npi^2(n+1)pixln xcos x,dx$Show that $lim_nrightarrowinfty int_n^n+1fleft(fracx(n!)^frac1nright)dx=f(e)$













5












$begingroup$


Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03
















5












$begingroup$


Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03














5












5








5


1



$begingroup$


Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?










share|cite|improve this question











$endgroup$




Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?







calculus integration limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 14 at 9:06









Bernard

123k741117




123k741117










asked Mar 14 at 8:51







user651692














  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03













  • 1




    $begingroup$
    The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
    $endgroup$
    – FDP
    Mar 14 at 9:03








1




1




$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03





$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03











4 Answers
4






active

oldest

votes


















5












$begingroup$

The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






share|cite|improve this answer











$endgroup$




















    5












    $begingroup$

    beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
    Perform the change of variable $y=sqrtx$



    beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
    &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
    &=int_0^infty frac21+x^2,dx\
    &=2Big[arctan xBig]_0^infty\
    &=pi
    endalign



    NB:
    beginalignint_0^infty fracln x1+x^2,dx=0endalign



    (perform the change of variable $y=frac1x$ )






    share|cite|improve this answer









    $endgroup$




















      3












      $begingroup$

      Hint:



      You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
      $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
      Now you get rid of the log with an integration by parts, setting
      $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
      This last integral is classically obtained from
      $$arctan t=intfracmathrm d t1+t^2$$
      integrating the latter by parts (again!).






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        @BarryCipra: Fixed. Thank you for pointing it!
        $endgroup$
        – Bernard
        Mar 14 at 10:12


















      2












      $begingroup$

      Let $x=tan^2theta$ and then
      begineqnarray*
      I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
      &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
      &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
      &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
      &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
      endeqnarray*

      Here
      $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
      is used. Integration by parts gives
      $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






      share|cite|improve this answer











      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147735%2fshow-that-lim-n-rightarrow-infty-int-0n-frac-sqrt-x-ln-x1x2-dx%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown
























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






        share|cite|improve this answer











        $endgroup$

















          5












          $begingroup$

          The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






          share|cite|improve this answer











          $endgroup$















            5












            5








            5





            $begingroup$

            The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$






            share|cite|improve this answer











            $endgroup$



            The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Mar 14 at 9:11

























            answered Mar 14 at 9:01









            J.G.J.G.

            30.9k23149




            30.9k23149





















                5












                $begingroup$

                beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                Perform the change of variable $y=sqrtx$



                beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                &=int_0^infty frac21+x^2,dx\
                &=2Big[arctan xBig]_0^infty\
                &=pi
                endalign



                NB:
                beginalignint_0^infty fracln x1+x^2,dx=0endalign



                (perform the change of variable $y=frac1x$ )






                share|cite|improve this answer









                $endgroup$

















                  5












                  $begingroup$

                  beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                  Perform the change of variable $y=sqrtx$



                  beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                  &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                  &=int_0^infty frac21+x^2,dx\
                  &=2Big[arctan xBig]_0^infty\
                  &=pi
                  endalign



                  NB:
                  beginalignint_0^infty fracln x1+x^2,dx=0endalign



                  (perform the change of variable $y=frac1x$ )






                  share|cite|improve this answer









                  $endgroup$















                    5












                    5








                    5





                    $begingroup$

                    beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                    Perform the change of variable $y=sqrtx$



                    beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                    &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                    &=int_0^infty frac21+x^2,dx\
                    &=2Big[arctan xBig]_0^infty\
                    &=pi
                    endalign



                    NB:
                    beginalignint_0^infty fracln x1+x^2,dx=0endalign



                    (perform the change of variable $y=frac1x$ )






                    share|cite|improve this answer









                    $endgroup$



                    beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
                    Perform the change of variable $y=sqrtx$



                    beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
                    &=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
                    &=int_0^infty frac21+x^2,dx\
                    &=2Big[arctan xBig]_0^infty\
                    &=pi
                    endalign



                    NB:
                    beginalignint_0^infty fracln x1+x^2,dx=0endalign



                    (perform the change of variable $y=frac1x$ )







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 14 at 9:35









                    FDPFDP

                    6,17211829




                    6,17211829





















                        3












                        $begingroup$

                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12















                        3












                        $begingroup$

                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).






                        share|cite|improve this answer











                        $endgroup$












                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12













                        3












                        3








                        3





                        $begingroup$

                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).






                        share|cite|improve this answer











                        $endgroup$



                        Hint:



                        You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
                        $$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
                        Now you get rid of the log with an integration by parts, setting
                        $$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
                        This last integral is classically obtained from
                        $$arctan t=intfracmathrm d t1+t^2$$
                        integrating the latter by parts (again!).







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Mar 14 at 10:11

























                        answered Mar 14 at 9:21









                        BernardBernard

                        123k741117




                        123k741117











                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12
















                        • $begingroup$
                          @BarryCipra: Fixed. Thank you for pointing it!
                          $endgroup$
                          – Bernard
                          Mar 14 at 10:12















                        $begingroup$
                        @BarryCipra: Fixed. Thank you for pointing it!
                        $endgroup$
                        – Bernard
                        Mar 14 at 10:12




                        $begingroup$
                        @BarryCipra: Fixed. Thank you for pointing it!
                        $endgroup$
                        – Bernard
                        Mar 14 at 10:12











                        2












                        $begingroup$

                        Let $x=tan^2theta$ and then
                        begineqnarray*
                        I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                        &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                        &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                        &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                        &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                        endeqnarray*

                        Here
                        $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                        is used. Integration by parts gives
                        $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






                        share|cite|improve this answer











                        $endgroup$

















                          2












                          $begingroup$

                          Let $x=tan^2theta$ and then
                          begineqnarray*
                          I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                          &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                          &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                          &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                          &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                          endeqnarray*

                          Here
                          $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                          is used. Integration by parts gives
                          $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






                          share|cite|improve this answer











                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            Let $x=tan^2theta$ and then
                            begineqnarray*
                            I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                            &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                            &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                            &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                            &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                            endeqnarray*

                            Here
                            $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                            is used. Integration by parts gives
                            $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$






                            share|cite|improve this answer











                            $endgroup$



                            Let $x=tan^2theta$ and then
                            begineqnarray*
                            I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
                            &=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
                            &=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
                            &=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
                            &=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
                            endeqnarray*

                            Here
                            $$ int_0^fracpi2ln(tantheta),dtheta=0 $$
                            is used. Integration by parts gives
                            $$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Mar 14 at 20:21

























                            answered Mar 14 at 14:52









                            xpaulxpaul

                            23.3k24655




                            23.3k24655



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147735%2fshow-that-lim-n-rightarrow-infty-int-0n-frac-sqrt-x-ln-x1x2-dx%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                                random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                                Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye