Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$Show that $lim_nrightarrow infty int_0^pi/2 2^n sqrtn sin^n(x) cos^n-2(x) ; dx = sqrt2pi$The value of $lim_nto inftyint_-infty^inftyf(x)cos^2 nx dx.$Show that $lim_t rightarrow infty tF(t) = 0.$Calculate $lim_nrightarrow infty int_-infty^inftyfrac11+fracx^4ndx$ if it exists.Calculate $lim_epsilon rightarrow 01over epsilon^2cdotbiggl( 1-1over2int_-1^1sqrtdt biggl)$Show that $lim_nrightarrow inftyint_a^pi/2sqrtn cos^n(x)dx=0$ for any $ain left(0,fracpi2right)$Find $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)$ and $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)-frac12ln(n)$.Find $lim_nrightarrowinftyint_2npi^2(n+1)pixln xcos x,dx$Show that $lim_nrightarrowinfty int_n^n+1fleft(fracx(n!)^frac1nright)dx=f(e)$
Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?
Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?
Grepping string, but include all non-blank lines following each grep match
How much do grades matter for a future academia position?
Does the Crossbow Expert feat's extra crossbow attack work with the reaction attack from a Hunter ranger's Giant Killer feature?
How do I Interface a PS/2 Keyboard without Modern Techniques?
How do you justify more code being written by following clean code practices?
Do I have to take mana from my deck or hand when tapping a dual land?
Usage of an old photo with expired copyright
What (the heck) is a Super Worm Equinox Moon?
Why would five hundred and five be same as one?
Why didn't Voldemort know what Grindelwald looked like?
Do people actually use the word "kaputt" in conversation?
Is there a reason to prefer HFS+ over APFS for disk images in High Sierra and/or Mojave?
How can I, as DM, avoid the Conga Line of Death occurring when implementing some form of flanking rule?
If the only attacker is removed from combat, is a creature still counted as having attacked this turn?
Why is the principal energy of an electron lower for excited electrons in a higher energy state?
Showing mass murder in a kid's book
Check if object is null and return null
Echo with obfuscation
Would this string work as string?
How would you translate "more" for use as an interface button?
How do I prevent inappropriate ads from appearing in my game?
How to leave product feedback on macOS?
Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$
Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$Show that $lim_nrightarrow infty int_0^pi/2 2^n sqrtn sin^n(x) cos^n-2(x) ; dx = sqrt2pi$The value of $lim_nto inftyint_-infty^inftyf(x)cos^2 nx dx.$Show that $lim_t rightarrow infty tF(t) = 0.$Calculate $lim_nrightarrow infty int_-infty^inftyfrac11+fracx^4ndx$ if it exists.Calculate $lim_epsilon rightarrow 01over epsilon^2cdotbiggl( 1-1over2int_-1^1sqrtdt biggl)$Show that $lim_nrightarrow inftyint_a^pi/2sqrtn cos^n(x)dx=0$ for any $ain left(0,fracpi2right)$Find $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)$ and $lim_nrightarrowinftysum_k=1^nfracnk(2n-k+1)-frac12ln(n)$.Find $lim_nrightarrowinftyint_2npi^2(n+1)pixln xcos x,dx$Show that $lim_nrightarrowinfty int_n^n+1fleft(fracx(n!)^frac1nright)dx=f(e)$
$begingroup$
Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?
calculus integration limits
$endgroup$
add a comment |
$begingroup$
Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?
calculus integration limits
$endgroup$
1
$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03
add a comment |
$begingroup$
Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?
calculus integration limits
$endgroup$
Show that $lim_nrightarrowinftyint_0^nfracsqrt xln x(1+x)^2,dx=pi$. This limit puzzled me as I never worked on this kind before and I am inclined to think that, as the $n$ is in the integral's boundary, there is a theorem involved like the dominant convergence theorem. I tried integrating by parts, but the $0$ of the integral prevented me from applying $log0$. How should I handle it?
calculus integration limits
calculus integration limits
edited Mar 14 at 9:06
Bernard
123k741117
123k741117
asked Mar 14 at 8:51
user651692
1
$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03
add a comment |
1
$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03
1
1
$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03
$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$
$endgroup$
add a comment |
$begingroup$
beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
Perform the change of variable $y=sqrtx$
beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
&=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
&=int_0^infty frac21+x^2,dx\
&=2Big[arctan xBig]_0^infty\
&=pi
endalign
NB:
beginalignint_0^infty fracln x1+x^2,dx=0endalign
(perform the change of variable $y=frac1x$ )
$endgroup$
add a comment |
$begingroup$
Hint:
You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
$$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
Now you get rid of the log with an integration by parts, setting
$$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
This last integral is classically obtained from
$$arctan t=intfracmathrm d t1+t^2$$
integrating the latter by parts (again!).
$endgroup$
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
add a comment |
$begingroup$
Let $x=tan^2theta$ and then
begineqnarray*
I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
&=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
&=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
&=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
&=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
endeqnarray*
Here
$$ int_0^fracpi2ln(tantheta),dtheta=0 $$
is used. Integration by parts gives
$$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147735%2fshow-that-lim-n-rightarrow-infty-int-0n-frac-sqrt-x-ln-x1x2-dx%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$
$endgroup$
add a comment |
$begingroup$
The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$
$endgroup$
add a comment |
$begingroup$
The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$
$endgroup$
The integrand is positive for $x>1$, so normally we'd just state the problem as $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$Let's first note that the substitution $x=tan^2 t$ allows us to solve a seemingly unrelated problem, $$int_0^inftyfracx^k-1(1+x)^2dx=int_0^pi/22sin^2k-1tcos^3-2k tdt=operatornameB(k,,2-k)\=Gamma(k)Gamma(1-k)=pi(1-k)cscpi k.$$(Look up Beta and Gamma functions if you don't know them well.) But this problem is not unrelated! Let's differentiate with respect to $k$: $$int_0^inftyfracx^k-1ln x(1+x)^2dx=-picscpi k[1+(1-k)cotpi k].$$Finally, substituting $k=frac32$ gives $$int_0^inftyfracsqrtxln x(1+x)^2dx=pi.$$
edited Mar 14 at 9:11
answered Mar 14 at 9:01
J.G.J.G.
30.9k23149
30.9k23149
add a comment |
add a comment |
$begingroup$
beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
Perform the change of variable $y=sqrtx$
beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
&=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
&=int_0^infty frac21+x^2,dx\
&=2Big[arctan xBig]_0^infty\
&=pi
endalign
NB:
beginalignint_0^infty fracln x1+x^2,dx=0endalign
(perform the change of variable $y=frac1x$ )
$endgroup$
add a comment |
$begingroup$
beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
Perform the change of variable $y=sqrtx$
beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
&=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
&=int_0^infty frac21+x^2,dx\
&=2Big[arctan xBig]_0^infty\
&=pi
endalign
NB:
beginalignint_0^infty fracln x1+x^2,dx=0endalign
(perform the change of variable $y=frac1x$ )
$endgroup$
add a comment |
$begingroup$
beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
Perform the change of variable $y=sqrtx$
beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
&=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
&=int_0^infty frac21+x^2,dx\
&=2Big[arctan xBig]_0^infty\
&=pi
endalign
NB:
beginalignint_0^infty fracln x1+x^2,dx=0endalign
(perform the change of variable $y=frac1x$ )
$endgroup$
beginalignJ&=int_0^infty fracsqrtxln x(1+x)^2,dxendalign
Perform the change of variable $y=sqrtx$
beginalignJ&=int_0^infty frac4x^2ln x(1+x^2)^2,dx\
&=left[-frac12(1+x^2)times 4xln xright]_0^infty+int_0^infty frac2ln x1+x^2,dx+int_0^infty frac21+x^2,dx\
&=int_0^infty frac21+x^2,dx\
&=2Big[arctan xBig]_0^infty\
&=pi
endalign
NB:
beginalignint_0^infty fracln x1+x^2,dx=0endalign
(perform the change of variable $y=frac1x$ )
answered Mar 14 at 9:35
FDPFDP
6,17211829
6,17211829
add a comment |
add a comment |
$begingroup$
Hint:
You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
$$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
Now you get rid of the log with an integration by parts, setting
$$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
This last integral is classically obtained from
$$arctan t=intfracmathrm d t1+t^2$$
integrating the latter by parts (again!).
$endgroup$
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
add a comment |
$begingroup$
Hint:
You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
$$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
Now you get rid of the log with an integration by parts, setting
$$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
This last integral is classically obtained from
$$arctan t=intfracmathrm d t1+t^2$$
integrating the latter by parts (again!).
$endgroup$
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
add a comment |
$begingroup$
Hint:
You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
$$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
Now you get rid of the log with an integration by parts, setting
$$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
This last integral is classically obtained from
$$arctan t=intfracmathrm d t1+t^2$$
integrating the latter by parts (again!).
$endgroup$
Hint:
You can use the substitution $sqrt x=tiff x=t^2,;t>0$ and obtain for the indefinite integral:
$$int fracsqrt xln x(1+x)^2,dx=intfrac2tln t(1+t^2)^2,fracmathrm dtt=2intfracln t(1+t^2)^2,mathrm dt.$$
Now you get rid of the log with an integration by parts, setting
$$u=ln t,quadmathrm dv=fracmathrm d t(1+t^2)^2,enspacetextwhencequadmathrm d u=fracmathrm dtt,quad v= intfracmathrm d t(1+t^2)^2.$$
This last integral is classically obtained from
$$arctan t=intfracmathrm d t1+t^2$$
integrating the latter by parts (again!).
edited Mar 14 at 10:11
answered Mar 14 at 9:21
BernardBernard
123k741117
123k741117
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
add a comment |
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
$begingroup$
@BarryCipra: Fixed. Thank you for pointing it!
$endgroup$
– Bernard
Mar 14 at 10:12
add a comment |
$begingroup$
Let $x=tan^2theta$ and then
begineqnarray*
I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
&=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
&=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
&=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
&=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
endeqnarray*
Here
$$ int_0^fracpi2ln(tantheta),dtheta=0 $$
is used. Integration by parts gives
$$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$
$endgroup$
add a comment |
$begingroup$
Let $x=tan^2theta$ and then
begineqnarray*
I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
&=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
&=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
&=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
&=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
endeqnarray*
Here
$$ int_0^fracpi2ln(tantheta),dtheta=0 $$
is used. Integration by parts gives
$$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$
$endgroup$
add a comment |
$begingroup$
Let $x=tan^2theta$ and then
begineqnarray*
I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
&=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
&=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
&=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
&=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
endeqnarray*
Here
$$ int_0^fracpi2ln(tantheta),dtheta=0 $$
is used. Integration by parts gives
$$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$
$endgroup$
Let $x=tan^2theta$ and then
begineqnarray*
I&=&int_0^inftysqrt xln xover(1+x)^2,dx\
&=&int_0^fracpi2frac2tanthetaln(tantheta)sec^4(theta)2tanthetasec^2theta,dtheta\
&=&4int_0^fracpi2sin^2thetaln(tantheta),dtheta\
&=&2int_0^fracpi2[1-cos(2theta)]ln(tantheta),dtheta\
&=&-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta.
endeqnarray*
Here
$$ int_0^fracpi2ln(tantheta),dtheta=0 $$
is used. Integration by parts gives
$$ I=-2int_0^fracpi2cos(2theta)ln(tantheta),dtheta=-2(-theta+frac12sin(2theta)ln(tantheta))bigg|_0^fracpi2=pi. $$
edited Mar 14 at 20:21
answered Mar 14 at 14:52
xpaulxpaul
23.3k24655
23.3k24655
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147735%2fshow-that-lim-n-rightarrow-infty-int-0n-frac-sqrt-x-ln-x1x2-dx%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The integral converges at $infty$. I mean, you want to compute: $int_0^inftyfracsqrt xln x(1+x)^2dx$
$endgroup$
– FDP
Mar 14 at 9:03