If $z=sqrt3+i=(a+ib)(c+id)$, then find $tan^-1dfracba+tan^-1dfracdc$Find area bounded by two unequal chords and an arc in a discProve $left|fracz_1z_2right|=fracz_2$ for two complex numbersShow that $y=frac4sintheta2+costheta-theta$ is increasing function when $theta in [0,fracpi2]$Proving a proposition involving the argument of a complex numberFind the value of $4tan(theta _1)tan(theta _2)$ if $theta _1$ and $theta _2$ are the solutions of the given equationVerify $arccosx+arcsinx=fracpi2$Trouble with Trig Substitution IntegralEvaluation in a complex functionIs there any formula to find $sin^-1a +sin^-1b$If $z=dfrac(z_1+barz_2)z_1z_2barz_1$ where $z_1=1+2i$ and $z_2=1-i$, then find $arg(z)$
How to leave product feedback on macOS?
Why the "ls" command is showing the permissions of files in a FAT32 partition?
When is "ei" a diphthong?
Should I warn new/prospective PhD Student that supervisor is terrible?
How would a solely written language work mechanically
Should I assume I have passed probation?
Why didn't Voldemort know what Grindelwald looked like?
Would this string work as string?
Showing mass murder in a kid's book
Language involving irrational number is not a CFL
The Digit Triangles
Has the laser at Magurele, Romania reached a tenth of the Sun's power?
Why is the Sun approximated as a black body at ~ 5800 K?
Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?
How to make a list of partial sums using forEach
Why does a 97 / 92 key piano exist by Bösendorfer?
Why is participating in the European Parliamentary elections used as a threat?
Why do Radio Buttons not fill the entire outer circle?
Grepping string, but include all non-blank lines following each grep match
Why does the Persian emissary display a string of crowned skulls?
Can I run 125kHz RF circuit on a breadboard?
Make a Bowl of Alphabet Soup
Proving an identity involving cross products and coplanar vectors
Why didn’t Eve recognize the little cockroach as a living organism?
If $z=sqrt3+i=(a+ib)(c+id)$, then find $tan^-1dfracba+tan^-1dfracdc$
Find area bounded by two unequal chords and an arc in a discProve $left|fracz_1z_2right|=fracz_1$ for two complex numbersShow that $y=frac4sintheta2+costheta-theta$ is increasing function when $theta in [0,fracpi2]$Proving a proposition involving the argument of a complex numberFind the value of $4tan(theta _1)tan(theta _2)$ if $theta _1$ and $theta _2$ are the solutions of the given equationVerify $arccosx+arcsinx=fracpi2$Trouble with Trig Substitution IntegralEvaluation in a complex functionIs there any formula to find $sin^-1a +sin^-1b$If $z=dfrac(z_1+barz_2)z_1z_2barz_1$ where $z_1=1+2i$ and $z_2=1-i$, then find $arg(z)$
$begingroup$
If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________
$$
arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
$$
Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?
trigonometry complex-numbers
$endgroup$
add a comment |
$begingroup$
If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________
$$
arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
$$
Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?
trigonometry complex-numbers
$endgroup$
add a comment |
$begingroup$
If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________
$$
arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
$$
Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?
trigonometry complex-numbers
$endgroup$
If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________
$$
arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
$$
Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?
trigonometry complex-numbers
trigonometry complex-numbers
edited Mar 14 at 12:56
ss1729
asked Mar 14 at 7:49
ss1729ss1729
2,03711124
2,03711124
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147687%2fif-z-sqrt3i-aibcid-then-find-tan-1-dfracba-tan-1-dfrac%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign
$endgroup$
add a comment |
$begingroup$
I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign
$endgroup$
add a comment |
$begingroup$
I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign
$endgroup$
I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign
edited Mar 14 at 8:00
ss1729
2,03711124
2,03711124
answered Mar 14 at 7:55
José Carlos SantosJosé Carlos Santos
169k23132237
169k23132237
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147687%2fif-z-sqrt3i-aibcid-then-find-tan-1-dfracba-tan-1-dfrac%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown