If $z=sqrt3+i=(a+ib)(c+id)$, then find $tan^-1dfracba+tan^-1dfracdc$Find area bounded by two unequal chords and an arc in a discProve $left|fracz_1z_2right|=fracz_2$ for two complex numbersShow that $y=frac4sintheta2+costheta-theta$ is increasing function when $theta in [0,fracpi2]$Proving a proposition involving the argument of a complex numberFind the value of $4tan(theta _1)tan(theta _2)$ if $theta _1$ and $theta _2$ are the solutions of the given equationVerify $arccosx+arcsinx=fracpi2$Trouble with Trig Substitution IntegralEvaluation in a complex functionIs there any formula to find $sin^-1a +sin^-1b$If $z=dfrac(z_1+barz_2)z_1z_2barz_1$ where $z_1=1+2i$ and $z_2=1-i$, then find $arg(z)$

How to leave product feedback on macOS?

Why the "ls" command is showing the permissions of files in a FAT32 partition?

When is "ei" a diphthong?

Should I warn new/prospective PhD Student that supervisor is terrible?

How would a solely written language work mechanically

Should I assume I have passed probation?

Why didn't Voldemort know what Grindelwald looked like?

Would this string work as string?

Showing mass murder in a kid's book

Language involving irrational number is not a CFL

The Digit Triangles

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

Why is the Sun approximated as a black body at ~ 5800 K?

Are Captain Marvel's powers affected by Thanos breaking the Tesseract and claiming the stone?

How to make a list of partial sums using forEach

Why does a 97 / 92 key piano exist by Bösendorfer?

Why is participating in the European Parliamentary elections used as a threat?

Why do Radio Buttons not fill the entire outer circle?

Grepping string, but include all non-blank lines following each grep match

Why does the Persian emissary display a string of crowned skulls?

Can I run 125kHz RF circuit on a breadboard?

Make a Bowl of Alphabet Soup

Proving an identity involving cross products and coplanar vectors

Why didn’t Eve recognize the little cockroach as a living organism?



If $z=sqrt3+i=(a+ib)(c+id)$, then find $tan^-1dfracba+tan^-1dfracdc$


Find area bounded by two unequal chords and an arc in a discProve $left|fracz_1z_2right|=fracz_1$ for two complex numbersShow that $y=frac4sintheta2+costheta-theta$ is increasing function when $theta in [0,fracpi2]$Proving a proposition involving the argument of a complex numberFind the value of $4tan(theta _1)tan(theta _2)$ if $theta _1$ and $theta _2$ are the solutions of the given equationVerify $arccosx+arcsinx=fracpi2$Trouble with Trig Substitution IntegralEvaluation in a complex functionIs there any formula to find $sin^-1a +sin^-1b$If $z=dfrac(z_1+barz_2)z_1z_2barz_1$ where $z_1=1+2i$ and $z_2=1-i$, then find $arg(z)$













2












$begingroup$



If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________




$$
arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
$$

Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$



    If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________




    $$
    arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
    tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
    impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
    theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
    tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
    $$

    Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?










    share|cite|improve this question











    $endgroup$














      2












      2








      2


      1



      $begingroup$



      If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________




      $$
      arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
      tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
      impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
      theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
      tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
      $$

      Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?










      share|cite|improve this question











      $endgroup$





      If $z=sqrt3+i=(a+ib)(c+id)$, then $tan^-1dfracba+tan^-1dfracdc=$ _______________




      $$
      arg z=theta,quadarg(a+ib)=theta_1,quadarg(c+id)=theta_2impliesarg(z)=theta=theta_1+theta_2=fracpi6\
      tantheta=tanfracpi6=frac1sqrt3,quadtantheta_1=fracba,quadtantheta_2=fracdc\
      impliestheta_1=npi+tan^-1fracba,quadtheta_2=mpi+tan^-1fracdc\
      theta=fracpi6=(n+m)pi+tan^-1fracba+tan^-1fracdc\
      tan^-1fracba+tan^-1fracdc=fracpi6-(n+m)pi=fracpi6+kpi
      $$

      Is it the right way to prove that $tan^-1dfracba+tan^-1dfracdc=npi+dfracpi6$ ?







      trigonometry complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 14 at 12:56







      ss1729

















      asked Mar 14 at 7:49









      ss1729ss1729

      2,03711124




      2,03711124




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign






          share|cite|improve this answer











          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147687%2fif-z-sqrt3i-aibcid-then-find-tan-1-dfracba-tan-1-dfrac%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign






            share|cite|improve this answer











            $endgroup$

















              5












              $begingroup$

              I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign






              share|cite|improve this answer











              $endgroup$















                5












                5








                5





                $begingroup$

                I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign






                share|cite|improve this answer











                $endgroup$



                I think that a simpler way would bebeginaligntanleft(arctanleft(frac baright)+arctanleft(frac dcright)right)&=fracfrac ba+frac dc1-frac batimesfrac dc\&=fracbc+adac-bd\&=frac1sqrt3.endalign







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 14 at 8:00









                ss1729

                2,03711124




                2,03711124










                answered Mar 14 at 7:55









                José Carlos SantosJosé Carlos Santos

                169k23132237




                169k23132237



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147687%2fif-z-sqrt3i-aibcid-then-find-tan-1-dfracba-tan-1-dfrac%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                    random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                    Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye