$e^x neq 0$ Proof CorrectnessCorrectness of proof of division in ceiling functionCorrectness of Proof by RefutationProve that $ 2^n not equiv 1 pmodn $ for any $n > 1$.Proof of Correctness of Recursive AlgorithmProof about the convergence of a sequenceTowers of Hanoi - Proof of CorrectnessIs this proof for $e^ipi=-1$ correct?Proof in constructive mathematics using decidability.Is this proof of irrationality?A Proof for Generalized Rolle's Theorem

If the only attacker is removed from combat, is a creature still counted as having attacked this turn?

Telemetry for feature health

Overlapping circles covering polygon

What happens if I try to grapple mirror image?

Proving an identity involving cross products and coplanar vectors

Review your own paper in Mathematics

Why does the Persian emissary display a string of crowned skulls?

How many people need to be born every 8 years to sustain population?

Origin of pigs as a species

Mimic lecturing on blackboard, facing audience

Difference between shutdown options

SOQL query causes internal Salesforce error

Can I say "fingers" when referring to toes?

What does "tick" mean in this sentence?

How to get directions in deep space?

Identifying "long and narrow" polygons in with PostGIS

What is this high flying aircraft over Pennsylvania?

How do I tell my boss that I'm quitting in 15 days (a colleague left this week)

Is there a RAID 0 Equivalent for RAM?

Language involving irrational number is not a CFL

Unable to disable Microsoft Store in domain environment

Should I warn a new PhD Student?

What should be the ideal length of sentences in a blog post for ease of reading?

Is there a distance limit for minecart tracks?



$e^x neq 0$ Proof Correctness


Correctness of proof of division in ceiling functionCorrectness of Proof by RefutationProve that $ 2^n not equiv 1 pmodn $ for any $n > 1$.Proof of Correctness of Recursive AlgorithmProof about the convergence of a sequenceTowers of Hanoi - Proof of CorrectnessIs this proof for $e^ipi=-1$ correct?Proof in constructive mathematics using decidability.Is this proof of irrationality?A Proof for Generalized Rolle's Theorem













0












$begingroup$


note: I’m not looking for another proof for this, I am just asking if this proof is correct.



This is my proof.



Assume $f(x)=e^x=0$



Then $e^fracx2e^fracx2=0$



More generally, $(e^fracxn)^n=0$



$lim_n to inftyf(x)=lim_n to infty1^n=1$



That means $1=0$ hence the contradiction.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I don't follow the proof since the first limit, should it be $lim_n to infty f(x/n)$ perhaps? And why does that come out to $1^n$?
    $endgroup$
    – Joppy
    Mar 14 at 6:02










  • $begingroup$
    @Joppy It comes out to $1^n$ because I took the limit of $e^fracxn$ first which equals 1.
    $endgroup$
    – Simplex1
    Mar 14 at 6:04










  • $begingroup$
    It is quite clear from the expansion of $e^x$ that $e^x > 0$ for $x>0$ Now observe that $e^xcdot e^-x = 1.$ So $e^-x neq 0.$
    $endgroup$
    – Dbchatto67
    Mar 14 at 6:04











  • $begingroup$
    You can't evaluate limits like $(e^fracxn)^n$ "one at a time"
    $endgroup$
    – Joppy
    Mar 14 at 6:06










  • $begingroup$
    Why cant you do that?
    $endgroup$
    – Simplex1
    Mar 14 at 6:08















0












$begingroup$


note: I’m not looking for another proof for this, I am just asking if this proof is correct.



This is my proof.



Assume $f(x)=e^x=0$



Then $e^fracx2e^fracx2=0$



More generally, $(e^fracxn)^n=0$



$lim_n to inftyf(x)=lim_n to infty1^n=1$



That means $1=0$ hence the contradiction.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I don't follow the proof since the first limit, should it be $lim_n to infty f(x/n)$ perhaps? And why does that come out to $1^n$?
    $endgroup$
    – Joppy
    Mar 14 at 6:02










  • $begingroup$
    @Joppy It comes out to $1^n$ because I took the limit of $e^fracxn$ first which equals 1.
    $endgroup$
    – Simplex1
    Mar 14 at 6:04










  • $begingroup$
    It is quite clear from the expansion of $e^x$ that $e^x > 0$ for $x>0$ Now observe that $e^xcdot e^-x = 1.$ So $e^-x neq 0.$
    $endgroup$
    – Dbchatto67
    Mar 14 at 6:04











  • $begingroup$
    You can't evaluate limits like $(e^fracxn)^n$ "one at a time"
    $endgroup$
    – Joppy
    Mar 14 at 6:06










  • $begingroup$
    Why cant you do that?
    $endgroup$
    – Simplex1
    Mar 14 at 6:08













0












0








0





$begingroup$


note: I’m not looking for another proof for this, I am just asking if this proof is correct.



This is my proof.



Assume $f(x)=e^x=0$



Then $e^fracx2e^fracx2=0$



More generally, $(e^fracxn)^n=0$



$lim_n to inftyf(x)=lim_n to infty1^n=1$



That means $1=0$ hence the contradiction.










share|cite|improve this question











$endgroup$




note: I’m not looking for another proof for this, I am just asking if this proof is correct.



This is my proof.



Assume $f(x)=e^x=0$



Then $e^fracx2e^fracx2=0$



More generally, $(e^fracxn)^n=0$



$lim_n to inftyf(x)=lim_n to infty1^n=1$



That means $1=0$ hence the contradiction.







limits proof-verification exponential-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 14 at 7:11









José Carlos Santos

169k23132237




169k23132237










asked Mar 14 at 5:58









Simplex1Simplex1

404




404











  • $begingroup$
    I don't follow the proof since the first limit, should it be $lim_n to infty f(x/n)$ perhaps? And why does that come out to $1^n$?
    $endgroup$
    – Joppy
    Mar 14 at 6:02










  • $begingroup$
    @Joppy It comes out to $1^n$ because I took the limit of $e^fracxn$ first which equals 1.
    $endgroup$
    – Simplex1
    Mar 14 at 6:04










  • $begingroup$
    It is quite clear from the expansion of $e^x$ that $e^x > 0$ for $x>0$ Now observe that $e^xcdot e^-x = 1.$ So $e^-x neq 0.$
    $endgroup$
    – Dbchatto67
    Mar 14 at 6:04











  • $begingroup$
    You can't evaluate limits like $(e^fracxn)^n$ "one at a time"
    $endgroup$
    – Joppy
    Mar 14 at 6:06










  • $begingroup$
    Why cant you do that?
    $endgroup$
    – Simplex1
    Mar 14 at 6:08
















  • $begingroup$
    I don't follow the proof since the first limit, should it be $lim_n to infty f(x/n)$ perhaps? And why does that come out to $1^n$?
    $endgroup$
    – Joppy
    Mar 14 at 6:02










  • $begingroup$
    @Joppy It comes out to $1^n$ because I took the limit of $e^fracxn$ first which equals 1.
    $endgroup$
    – Simplex1
    Mar 14 at 6:04










  • $begingroup$
    It is quite clear from the expansion of $e^x$ that $e^x > 0$ for $x>0$ Now observe that $e^xcdot e^-x = 1.$ So $e^-x neq 0.$
    $endgroup$
    – Dbchatto67
    Mar 14 at 6:04











  • $begingroup$
    You can't evaluate limits like $(e^fracxn)^n$ "one at a time"
    $endgroup$
    – Joppy
    Mar 14 at 6:06










  • $begingroup$
    Why cant you do that?
    $endgroup$
    – Simplex1
    Mar 14 at 6:08















$begingroup$
I don't follow the proof since the first limit, should it be $lim_n to infty f(x/n)$ perhaps? And why does that come out to $1^n$?
$endgroup$
– Joppy
Mar 14 at 6:02




$begingroup$
I don't follow the proof since the first limit, should it be $lim_n to infty f(x/n)$ perhaps? And why does that come out to $1^n$?
$endgroup$
– Joppy
Mar 14 at 6:02












$begingroup$
@Joppy It comes out to $1^n$ because I took the limit of $e^fracxn$ first which equals 1.
$endgroup$
– Simplex1
Mar 14 at 6:04




$begingroup$
@Joppy It comes out to $1^n$ because I took the limit of $e^fracxn$ first which equals 1.
$endgroup$
– Simplex1
Mar 14 at 6:04












$begingroup$
It is quite clear from the expansion of $e^x$ that $e^x > 0$ for $x>0$ Now observe that $e^xcdot e^-x = 1.$ So $e^-x neq 0.$
$endgroup$
– Dbchatto67
Mar 14 at 6:04





$begingroup$
It is quite clear from the expansion of $e^x$ that $e^x > 0$ for $x>0$ Now observe that $e^xcdot e^-x = 1.$ So $e^-x neq 0.$
$endgroup$
– Dbchatto67
Mar 14 at 6:04













$begingroup$
You can't evaluate limits like $(e^fracxn)^n$ "one at a time"
$endgroup$
– Joppy
Mar 14 at 6:06




$begingroup$
You can't evaluate limits like $(e^fracxn)^n$ "one at a time"
$endgroup$
– Joppy
Mar 14 at 6:06












$begingroup$
Why cant you do that?
$endgroup$
– Simplex1
Mar 14 at 6:08




$begingroup$
Why cant you do that?
$endgroup$
– Simplex1
Mar 14 at 6:08










1 Answer
1






active

oldest

votes


















7












$begingroup$

The proof is not correct because it assumes implicitely that if a sequence $(a_n)_ninmathbb N$ converges to $1$, then $lim_ntoinftya_n^n=1$. This is not true. For instance,$$lim_ntoinfty left (1 + frac1n right )=1text and lim_ntoinftyleft(1 + frac1nright)^n=eneq1.$$






share|cite|improve this answer











$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147614%2fex-neq-0-proof-correctness%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    The proof is not correct because it assumes implicitely that if a sequence $(a_n)_ninmathbb N$ converges to $1$, then $lim_ntoinftya_n^n=1$. This is not true. For instance,$$lim_ntoinfty left (1 + frac1n right )=1text and lim_ntoinftyleft(1 + frac1nright)^n=eneq1.$$






    share|cite|improve this answer











    $endgroup$

















      7












      $begingroup$

      The proof is not correct because it assumes implicitely that if a sequence $(a_n)_ninmathbb N$ converges to $1$, then $lim_ntoinftya_n^n=1$. This is not true. For instance,$$lim_ntoinfty left (1 + frac1n right )=1text and lim_ntoinftyleft(1 + frac1nright)^n=eneq1.$$






      share|cite|improve this answer











      $endgroup$















        7












        7








        7





        $begingroup$

        The proof is not correct because it assumes implicitely that if a sequence $(a_n)_ninmathbb N$ converges to $1$, then $lim_ntoinftya_n^n=1$. This is not true. For instance,$$lim_ntoinfty left (1 + frac1n right )=1text and lim_ntoinftyleft(1 + frac1nright)^n=eneq1.$$






        share|cite|improve this answer











        $endgroup$



        The proof is not correct because it assumes implicitely that if a sequence $(a_n)_ninmathbb N$ converges to $1$, then $lim_ntoinftya_n^n=1$. This is not true. For instance,$$lim_ntoinfty left (1 + frac1n right )=1text and lim_ntoinftyleft(1 + frac1nright)^n=eneq1.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 14 at 6:22









        Dbchatto67

        1,995319




        1,995319










        answered Mar 14 at 6:16









        José Carlos SantosJosé Carlos Santos

        169k23132237




        169k23132237



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147614%2fex-neq-0-proof-correctness%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

            Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

            Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers