Is expected value $E[X_1;X_1leq X_2]= E[X_1;X_1< X_2]$Find $E(X_1|X_2leq x_2, X_3leq x_3)$ where $(X_1,X_2,X_3)$ is multivariate normalConditional expectation: $E[X_1 X_2mid X_1 + X_2 X_3]$Probability and expectation of three ordered random variablesFind the value of $mathbbE(X_1+X_2+ldots+X_N)$ of i.i.d random variables $X_i$s.Verifying calculation inside an expected value problemLet $X_1,X_2,X_3$ be iid. U($0,1$) random variables. Then what will be the value of $E(fracX_1+X_2X_1+X_2+X_3$)?Throw a dice-expected value.Finding conditional expectation $E[X_1 | X_2 = x_2]$Expected value- $E(1/3)^t$Expected value of $Z=X_1+X_2$ if $X_1<X_3$.and $Z=X_1$ if $X_3leq X_1$

Multi tool use
Multi tool use

Is it true that real estate prices mainly go up?

Is "history" a male-biased word ("his+story")?

What is the meaning of triple curly braces in phtml template files? When and how do we use them?

Solving "Resistance between two nodes on a grid" problem in Mathematica

Why don't MCU characters ever seem to have language issues?

Good for you! in Russian

A question on the ultrafilter number

Does a Catoblepas statblock appear in an official D&D 5e product?

"One can do his homework in the library"

MTG: Can I kill an opponent in response to lethal activated abilities, and not take the damage?

Should QA ask requirements to developers?

Algorithm to convert a fixed-length string to the smallest possible collision-free representation?

Why is there a voltage between the mains ground and my radiator?

PTIJ: Why can't I eat anything?

How much stiffer are 23c tires over 28c?

Am I not good enough for you?

They call me Inspector Morse

If the Captain's screens are out, does he switch seats with the co-pilot?

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?

Do I really need to have a scientific explanation for my premise?

Finding algorithms of QGIS commands?

Do f-stop and exposure time perfectly cancel?

What to do when during a meeting client people start to fight (even physically) with each others?

What wound would be of little consequence to a biped but terrible for a quadruped?



Is expected value $E[X_1;X_1leq X_2]= E[X_1;X_1


Find $E(X_1|X_2leq x_2, X_3leq x_3)$ where $(X_1,X_2,X_3)$ is multivariate normalConditional expectation: $E[X_1 X_2mid X_1 + X_2 X_3]$Probability and expectation of three ordered random variablesFind the value of $mathbbE(X_1+X_2+ldots+X_N)$ of i.i.d random variables $X_i$s.Verifying calculation inside an expected value problemLet $X_1,X_2,X_3$ be iid. U($0,1$) random variables. Then what will be the value of $E(fracX_1+X_2X_1+X_2+X_3$)?Throw a dice-expected value.Finding conditional expectation $E[X_1 | X_2 = x_2]$Expected value- $E(1/3)^t$Expected value of $Z=X_1+X_2$ if $X_1<X_3$.and $Z=X_1$ if $X_3leq X_1$













0












$begingroup$


Let $X_1, X_2$ two independent random variables with PDF $f_X_i(x_i)$.
Is this formula is true
$$E[X_1;X_1leq X_2]=
int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$



I am asking if the expected value
$$E[X_1;X_1leq X_2]= E[X_1;X_1< X_2]$$,



or
$$E[X_1;X_1< X_2]=E[X_1]-E[X_1;X_1leq X_2].$$



Thanks










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    Let $X_1, X_2$ two independent random variables with PDF $f_X_i(x_i)$.
    Is this formula is true
    $$E[X_1;X_1leq X_2]=
    int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$



    I am asking if the expected value
    $$E[X_1;X_1leq X_2]= E[X_1;X_1< X_2]$$,



    or
    $$E[X_1;X_1< X_2]=E[X_1]-E[X_1;X_1leq X_2].$$



    Thanks










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      Let $X_1, X_2$ two independent random variables with PDF $f_X_i(x_i)$.
      Is this formula is true
      $$E[X_1;X_1leq X_2]=
      int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$



      I am asking if the expected value
      $$E[X_1;X_1leq X_2]= E[X_1;X_1< X_2]$$,



      or
      $$E[X_1;X_1< X_2]=E[X_1]-E[X_1;X_1leq X_2].$$



      Thanks










      share|cite|improve this question









      $endgroup$




      Let $X_1, X_2$ two independent random variables with PDF $f_X_i(x_i)$.
      Is this formula is true
      $$E[X_1;X_1leq X_2]=
      int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$



      I am asking if the expected value
      $$E[X_1;X_1leq X_2]= E[X_1;X_1< X_2]$$,



      or
      $$E[X_1;X_1< X_2]=E[X_1]-E[X_1;X_1leq X_2].$$



      Thanks







      conditional-expectation expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      MonirMonir

      368




      368




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          If $X_1$ and $X_2$ are independent random variables with a densities then $PX_1=X_2=0$ so it is true that $E(X_1;X_1 leq X_2)=E(X_1;X_1 < X_2)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
            $endgroup$
            – Monir
            2 days ago










          • $begingroup$
            @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
            $endgroup$
            – Kavi Rama Murthy
            2 days ago










          • $begingroup$
            Ok, thank you Prof Kavi Rama Murthy.
            $endgroup$
            – Monir
            2 days ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142277%2fis-expected-value-ex-1x-1-leq-x-2-ex-1x-1-x-2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          If $X_1$ and $X_2$ are independent random variables with a densities then $PX_1=X_2=0$ so it is true that $E(X_1;X_1 leq X_2)=E(X_1;X_1 < X_2)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
            $endgroup$
            – Monir
            2 days ago










          • $begingroup$
            @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
            $endgroup$
            – Kavi Rama Murthy
            2 days ago










          • $begingroup$
            Ok, thank you Prof Kavi Rama Murthy.
            $endgroup$
            – Monir
            2 days ago















          1












          $begingroup$

          If $X_1$ and $X_2$ are independent random variables with a densities then $PX_1=X_2=0$ so it is true that $E(X_1;X_1 leq X_2)=E(X_1;X_1 < X_2)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
            $endgroup$
            – Monir
            2 days ago










          • $begingroup$
            @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
            $endgroup$
            – Kavi Rama Murthy
            2 days ago










          • $begingroup$
            Ok, thank you Prof Kavi Rama Murthy.
            $endgroup$
            – Monir
            2 days ago













          1












          1








          1





          $begingroup$

          If $X_1$ and $X_2$ are independent random variables with a densities then $PX_1=X_2=0$ so it is true that $E(X_1;X_1 leq X_2)=E(X_1;X_1 < X_2)$.






          share|cite|improve this answer









          $endgroup$



          If $X_1$ and $X_2$ are independent random variables with a densities then $PX_1=X_2=0$ so it is true that $E(X_1;X_1 leq X_2)=E(X_1;X_1 < X_2)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          Kavi Rama MurthyKavi Rama Murthy

          66.6k53067




          66.6k53067











          • $begingroup$
            Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
            $endgroup$
            – Monir
            2 days ago










          • $begingroup$
            @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
            $endgroup$
            – Kavi Rama Murthy
            2 days ago










          • $begingroup$
            Ok, thank you Prof Kavi Rama Murthy.
            $endgroup$
            – Monir
            2 days ago
















          • $begingroup$
            Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
            $endgroup$
            – Monir
            2 days ago










          • $begingroup$
            @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
            $endgroup$
            – Kavi Rama Murthy
            2 days ago










          • $begingroup$
            Ok, thank you Prof Kavi Rama Murthy.
            $endgroup$
            – Monir
            2 days ago















          $begingroup$
          Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
          $endgroup$
          – Monir
          2 days ago




          $begingroup$
          Ok, is my formula is true $$E[X_1;X_1leq X_2]= int_x_2=0^inftyBig(int_x_1=0^x_2x_1 f_X_1(x_1)d x_1Big)f_X_2(x_2)dx_2$$
          $endgroup$
          – Monir
          2 days ago












          $begingroup$
          @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
          $endgroup$
          – Kavi Rama Murthy
          2 days ago




          $begingroup$
          @Monir It is true provided the random variables are non-negative. In general the integrals start from $-infty$.
          $endgroup$
          – Kavi Rama Murthy
          2 days ago












          $begingroup$
          Ok, thank you Prof Kavi Rama Murthy.
          $endgroup$
          – Monir
          2 days ago




          $begingroup$
          Ok, thank you Prof Kavi Rama Murthy.
          $endgroup$
          – Monir
          2 days ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142277%2fis-expected-value-ex-1x-1-leq-x-2-ex-1x-1-x-2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          xaiMpSf0SQiNK0IbOvTQ4KBzUZ Witn5241w4QVvNYO,mWEqn,wSevKh1fs 3y 7,2
          Dy6Q,Opm SVDny1E2zgBF1 AWX8rDmHbu kVdSm rOV0MvddR5KK OJF7Y3DjWouf

          Popular posts from this blog

          Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee