Finding Cumulative distribution function of $f_x(X) = frac14 cdot |X|$Cumulative distribution function and expected valueFinding Cumulative Distribution Function given two independent pdfsFind continuous stochastic variable $X$ with PDF $f_X = frac1x^2$Cumulative distribution function of sub of two random variableFinding the probability density from cumulative distribution functioncumulative distribution function method transformationFinding density function given a cumulative distributionCumulative Distribution Function for a Certain rangeCummulative Distribution Function: Sum of two independent exp-distributed random variablesCumulative distribution function to probability density

Multi tool use
Multi tool use

Word for a person who has no opinion about whether god exists

Could you please stop shuffling the deck and play already?

What are some noteworthy "mic-drop" moments in math?

Why doesn't this Google Translate ad use the word "Translation" instead of "Translate"?

Can you reject a postdoc offer after the PI has paid a large sum for flights/accommodation for your visit?

Replacing Windows 7 security updates with anti-virus?

Solving "Resistance between two nodes on a grid" problem in Mathematica

Offered promotion but I'm leaving. Should I tell?

What to do when during a meeting client people start to fight (even physically) with each others?

How do you like my writing?

Should I tell my boss the work he did was worthless

Placing subfig vertically

Unreachable code, but reachable with exception

What is the chance of making a successful appeal to dismissal decision from a PhD program after failing the qualifying exam in the 2nd attempt?

Why would one plane in this picture not have gear down yet?

How much attack damage does the AC boost from a shield prevent on average?

In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?

BitNot does not flip bits in the way I expected

Am I not good enough for you?

Algorithm to convert a fixed-length string to the smallest possible collision-free representation?

Why is there a voltage between the mains ground and my radiator?

Good allowance savings plan?

Making a sword in the stone, in a medieval world without magic

Time travel short story where dinosaur doesn't taste like chicken



Finding Cumulative distribution function of $f_x(X) = frac14 cdot |X|$


Cumulative distribution function and expected valueFinding Cumulative Distribution Function given two independent pdfsFind continuous stochastic variable $X$ with PDF $f_X = frac1x^2$Cumulative distribution function of sub of two random variableFinding the probability density from cumulative distribution functioncumulative distribution function method transformationFinding density function given a cumulative distributionCumulative Distribution Function for a Certain rangeCummulative Distribution Function: Sum of two independent exp-distributed random variablesCumulative distribution function to probability density













0












$begingroup$



Let $f_X(x) = frac14cdot |X|$ a probability density function.



$-2<X<2$;



Find the Cumulative distribution function of $f_X(x)$.




What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.



Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.



However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.



I can't understand why.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
    $endgroup$
    – Minus One-Twelfth
    2 days ago







  • 1




    $begingroup$
    Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
    $endgroup$
    – Infiaria
    2 days ago










  • $begingroup$
    @Infiaria Yes, it is. Thank you.
    $endgroup$
    – Alan
    2 days ago










  • $begingroup$
    @MinusOne-Twelfth Got it to work, thanks.
    $endgroup$
    – Alan
    2 days ago















0












$begingroup$



Let $f_X(x) = frac14cdot |X|$ a probability density function.



$-2<X<2$;



Find the Cumulative distribution function of $f_X(x)$.




What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.



Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.



However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.



I can't understand why.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
    $endgroup$
    – Minus One-Twelfth
    2 days ago







  • 1




    $begingroup$
    Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
    $endgroup$
    – Infiaria
    2 days ago










  • $begingroup$
    @Infiaria Yes, it is. Thank you.
    $endgroup$
    – Alan
    2 days ago










  • $begingroup$
    @MinusOne-Twelfth Got it to work, thanks.
    $endgroup$
    – Alan
    2 days ago













0












0








0





$begingroup$



Let $f_X(x) = frac14cdot |X|$ a probability density function.



$-2<X<2$;



Find the Cumulative distribution function of $f_X(x)$.




What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.



Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.



However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.



I can't understand why.










share|cite|improve this question











$endgroup$





Let $f_X(x) = frac14cdot |X|$ a probability density function.



$-2<X<2$;



Find the Cumulative distribution function of $f_X(x)$.




What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.



Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.



However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.



I can't understand why.







probability probability-theory density-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago







Alan

















asked 2 days ago









AlanAlan

1,3991021




1,3991021







  • 1




    $begingroup$
    We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
    $endgroup$
    – Minus One-Twelfth
    2 days ago







  • 1




    $begingroup$
    Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
    $endgroup$
    – Infiaria
    2 days ago










  • $begingroup$
    @Infiaria Yes, it is. Thank you.
    $endgroup$
    – Alan
    2 days ago










  • $begingroup$
    @MinusOne-Twelfth Got it to work, thanks.
    $endgroup$
    – Alan
    2 days ago












  • 1




    $begingroup$
    We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
    $endgroup$
    – Minus One-Twelfth
    2 days ago







  • 1




    $begingroup$
    Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
    $endgroup$
    – Infiaria
    2 days ago










  • $begingroup$
    @Infiaria Yes, it is. Thank you.
    $endgroup$
    – Alan
    2 days ago










  • $begingroup$
    @MinusOne-Twelfth Got it to work, thanks.
    $endgroup$
    – Alan
    2 days ago







1




1




$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago





$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago





1




1




$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago




$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago












$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago




$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago












$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago




$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago










1 Answer
1






active

oldest

votes


















1












$begingroup$

With the help above, I made it -



I will show the answer for the interval $-2 < x < 0$. The other one is symetric.



$$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
$$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.



So at the end we get -



$$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
% TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
% qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
% q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
% aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
% peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
% GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
% aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
% aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
% aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
% aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
% eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
% qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
$$






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142218%2ffinding-cumulative-distribution-function-of-f-xx-frac14-cdot-x%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    With the help above, I made it -



    I will show the answer for the interval $-2 < x < 0$. The other one is symetric.



    $$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
    $$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.



    So at the end we get -



    $$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
    % MathType!MTEF!2!1!+-
    % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
    % MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
    % TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
    % qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
    % q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
    % aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
    % peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
    % GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
    % aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
    % aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
    % aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
    % aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
    % eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
    % qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
    $$






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      With the help above, I made it -



      I will show the answer for the interval $-2 < x < 0$. The other one is symetric.



      $$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
      $$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.



      So at the end we get -



      $$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
      % MathType!MTEF!2!1!+-
      % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
      % MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
      % TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
      % qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
      % q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
      % aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
      % peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
      % GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
      % aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
      % aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
      % aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
      % aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
      % eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
      % qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
      $$






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        With the help above, I made it -



        I will show the answer for the interval $-2 < x < 0$. The other one is symetric.



        $$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
        $$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.



        So at the end we get -



        $$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
        % MathType!MTEF!2!1!+-
        % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
        % MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
        % TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
        % qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
        % q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
        % aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
        % peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
        % GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
        % aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
        % aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
        % aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
        % aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
        % eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
        % qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
        $$






        share|cite|improve this answer









        $endgroup$



        With the help above, I made it -



        I will show the answer for the interval $-2 < x < 0$. The other one is symetric.



        $$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
        $$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.



        So at the end we get -



        $$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
        % MathType!MTEF!2!1!+-
        % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
        % MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
        % TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
        % qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
        % q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
        % aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
        % peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
        % GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
        % aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
        % aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
        % aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
        % aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
        % eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
        % qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 days ago









        AlanAlan

        1,3991021




        1,3991021



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142218%2ffinding-cumulative-distribution-function-of-f-xx-frac14-cdot-x%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            vG6AbwDSo
            rBGviKq79WEeY8WvkTax2qxmC,EJRIs1yyQIqtHaZ

            Popular posts from this blog

            Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

            Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

            Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee