Finding Cumulative distribution function of $f_x(X) = frac14 cdot |X|$Cumulative distribution function and expected valueFinding Cumulative Distribution Function given two independent pdfsFind continuous stochastic variable $X$ with PDF $f_X = frac1x^2$Cumulative distribution function of sub of two random variableFinding the probability density from cumulative distribution functioncumulative distribution function method transformationFinding density function given a cumulative distributionCumulative Distribution Function for a Certain rangeCummulative Distribution Function: Sum of two independent exp-distributed random variablesCumulative distribution function to probability density
Word for a person who has no opinion about whether god exists
Could you please stop shuffling the deck and play already?
What are some noteworthy "mic-drop" moments in math?
Why doesn't this Google Translate ad use the word "Translation" instead of "Translate"?
Can you reject a postdoc offer after the PI has paid a large sum for flights/accommodation for your visit?
Replacing Windows 7 security updates with anti-virus?
Solving "Resistance between two nodes on a grid" problem in Mathematica
Offered promotion but I'm leaving. Should I tell?
What to do when during a meeting client people start to fight (even physically) with each others?
How do you like my writing?
Should I tell my boss the work he did was worthless
Placing subfig vertically
Unreachable code, but reachable with exception
What is the chance of making a successful appeal to dismissal decision from a PhD program after failing the qualifying exam in the 2nd attempt?
Why would one plane in this picture not have gear down yet?
How much attack damage does the AC boost from a shield prevent on average?
In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?
BitNot does not flip bits in the way I expected
Am I not good enough for you?
Algorithm to convert a fixed-length string to the smallest possible collision-free representation?
Why is there a voltage between the mains ground and my radiator?
Good allowance savings plan?
Making a sword in the stone, in a medieval world without magic
Time travel short story where dinosaur doesn't taste like chicken
Finding Cumulative distribution function of $f_x(X) = frac14 cdot |X|$
Cumulative distribution function and expected valueFinding Cumulative Distribution Function given two independent pdfsFind continuous stochastic variable $X$ with PDF $f_X = frac1x^2$Cumulative distribution function of sub of two random variableFinding the probability density from cumulative distribution functioncumulative distribution function method transformationFinding density function given a cumulative distributionCumulative Distribution Function for a Certain rangeCummulative Distribution Function: Sum of two independent exp-distributed random variablesCumulative distribution function to probability density
$begingroup$
Let $f_X(x) = frac14cdot |X|$ a probability density function.
$-2<X<2$;
Find the Cumulative distribution function of $f_X(x)$.
What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.
Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.
However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.
I can't understand why.
probability probability-theory density-function
$endgroup$
add a comment |
$begingroup$
Let $f_X(x) = frac14cdot |X|$ a probability density function.
$-2<X<2$;
Find the Cumulative distribution function of $f_X(x)$.
What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.
Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.
However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.
I can't understand why.
probability probability-theory density-function
$endgroup$
1
$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago
1
$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago
$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago
$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago
add a comment |
$begingroup$
Let $f_X(x) = frac14cdot |X|$ a probability density function.
$-2<X<2$;
Find the Cumulative distribution function of $f_X(x)$.
What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.
Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.
However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.
I can't understand why.
probability probability-theory density-function
$endgroup$
Let $f_X(x) = frac14cdot |X|$ a probability density function.
$-2<X<2$;
Find the Cumulative distribution function of $f_X(x)$.
What I thought was the answer is $F_X = frac12 + fracx8$. Since a CDF is a function which tells us the probability of a $P(X<a)$, given certain.
Drawing the PDF generats a graph of a symetric function, which gives us a probability of a least $frac12$.
However I found out it is $F_x = PleftXle xright=frac12-frac12cdot |x|cdot |fracx4|= frac12 - fracx^28$, for $-2 < x < 0$.
I can't understand why.
probability probability-theory density-function
probability probability-theory density-function
edited 2 days ago
Alan
asked 2 days ago
AlanAlan
1,3991021
1,3991021
1
$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago
1
$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago
$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago
$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago
add a comment |
1
$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago
1
$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago
$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago
$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago
1
1
$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago
$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago
1
1
$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago
$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago
$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago
$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago
$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago
$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
With the help above, I made it -
I will show the answer for the interval $-2 < x < 0$. The other one is symetric.
$$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
$$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.
So at the end we get -
$$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
% TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
% qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
% q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
% aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
% peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
% GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
% aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
% aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
% aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
% aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
% eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
% qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142218%2ffinding-cumulative-distribution-function-of-f-xx-frac14-cdot-x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With the help above, I made it -
I will show the answer for the interval $-2 < x < 0$. The other one is symetric.
$$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
$$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.
So at the end we get -
$$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
% TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
% qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
% q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
% aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
% peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
% GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
% aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
% aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
% aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
% aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
% eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
% qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
$$
$endgroup$
add a comment |
$begingroup$
With the help above, I made it -
I will show the answer for the interval $-2 < x < 0$. The other one is symetric.
$$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
$$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.
So at the end we get -
$$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
% TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
% qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
% q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
% aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
% peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
% GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
% aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
% aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
% aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
% aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
% eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
% qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
$$
$endgroup$
add a comment |
$begingroup$
With the help above, I made it -
I will show the answer for the interval $-2 < x < 0$. The other one is symetric.
$$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
$$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.
So at the end we get -
$$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
% TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
% qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
% q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
% aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
% peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
% GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
% aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
% aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
% aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
% aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
% eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
% qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
$$
$endgroup$
With the help above, I made it -
I will show the answer for the interval $-2 < x < 0$. The other one is symetric.
$$int_-2^x frac14cdot |t| dt = int_-2^x frac14cdot (-t) dt $$ (since t is negative).
$$=frac14cdot int_-2^x (t) dt =- frac14cdot fract^22|_-2^x=-frac14cdot left( fracx^22 - 2 right) =frac12 - fracx^28 $$.
So at the end we get -
$$F_x = left{ beginarray*20l0&X < - 2\beginarraylfrac12 - fracx^28\frac12 + fracx^28\1endarray&beginarrayl - 2 < x < 0\0 < x < 2\x > 2endarrayendarray right.
% MathType!MTEF!2!1!+-
% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B
% TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8
% qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9
% q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake
% aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWG4baapaqabaGc
% peGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaaiaaicdaaeaacaWGyb
% GaeyipaWJaeyOeI0IaaGOmaaabaeqabaWaaSaaaeaacaaIXaaabaGa
% aGOmaaaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaa
% aakeaacaaI4aaaaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey4k
% aSYaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaa
% aaaeaacaaIXaaaaqaabeqaaiabgkHiTiaaikdacqGH8aapcaWG4bGa
% eyipaWJaaGimaaqaaiaaicdacqGH8aapcaWG4bGaeyipaWJaaGOmaa
% qaaiaadIhacqGH+aGpcaaIYaaaaaaapeGaay5Eaaaaaa!5984!
$$
answered 2 days ago
AlanAlan
1,3991021
1,3991021
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142218%2ffinding-cumulative-distribution-function-of-f-xx-frac14-cdot-x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
We have $P(Xle x) =int_-2^x frac14|t|, dt $ if $xin (-2,2)$. Did you try using this? This probability is only at least $1/2$ if $xge 0$. To compute this integral, you can try doing it by cases of $x < 0$ and $x ge 0$ (for $xin (-2,2)$).
$endgroup$
– Minus One-Twelfth
2 days ago
1
$begingroup$
Do you mean it is $frac12 + fracx^28$ for $0 < x < 2$?
$endgroup$
– Infiaria
2 days ago
$begingroup$
@Infiaria Yes, it is. Thank you.
$endgroup$
– Alan
2 days ago
$begingroup$
@MinusOne-Twelfth Got it to work, thanks.
$endgroup$
– Alan
2 days ago