Find integer solution [on hold]Solution of a system of linear equationsLinear systems. Please help me solve thisHint: Approach for the solution of the following three equationsSystem of Linear Equations with integer CoefficientsFor what value of $k$ does the linear system have a unique/infinite/no solutionsProblem trying to find kernel of a linear transformationFind the specific values for KHow does one find the solution y(n) from y(n+1)? (System of Difference Equations)System of equations. Find when it has one solution, multiple solutions or no solutionsFind the values of $a$, for which this system of linear equations has one solution, no solution, or infinite solutions

Accountant/ lawyer will not return my call

How do I express some one as a black person?

What is wrong with Escaped Shapeshifter's original wording?

How are such low op-amp input currents possible?

What to do when during a meeting client people start to fight (even physically) with each others?

PTIJ: How can I halachically kill a vampire?

Does "variables should live in the smallest scope as possible" include the case "variables should not exist if possible"?

Finding algorithms of QGIS commands?

They call me Inspector Morse

Solving "Resistance between two nodes on a grid" problem in Mathematica

Aliens englobed the Solar System: will we notice?

Is Gradient Descent central to every optimizer?

What is the meaning of triple curly braces in phtml template files? When and how do we use them?

Latest web browser compatible with Windows 98

Built-In Shelves/Bookcases - IKEA vs Built

Should QA ask requirements to developers?

2×2×2 rubik's cube corner is twisted!

A three room house but a three headED dog

Offered promotion but I'm leaving. Should I tell?

Unreachable code, but reachable with exception

Grey hair or white hair

Why would one plane in this picture not have gear down yet?

Make a transparent 448*448 image

MTG: Can I kill an opponent in response to lethal activated abilities, and not take the damage?



Find integer solution [on hold]


Solution of a system of linear equationsLinear systems. Please help me solve thisHint: Approach for the solution of the following three equationsSystem of Linear Equations with integer CoefficientsFor what value of $k$ does the linear system have a unique/infinite/no solutionsProblem trying to find kernel of a linear transformationFind the specific values for KHow does one find the solution y(n) from y(n+1)? (System of Difference Equations)System of equations. Find when it has one solution, multiple solutions or no solutionsFind the values of $a$, for which this system of linear equations has one solution, no solution, or infinite solutions













0












$begingroup$


I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.










share|cite|improve this question











$endgroup$



put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.















  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago















0












$begingroup$


I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.










share|cite|improve this question











$endgroup$



put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.















  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago













0












0








0





$begingroup$


I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.










share|cite|improve this question











$endgroup$




I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.







linear-algebra systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Rodrigo de Azevedo

13k41960




13k41960










asked 2 days ago









ToribashToribash

375




375




put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.







put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.











  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago
















  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago















$begingroup$
I would sort the variables,$$a,b,c,d,e$$
$endgroup$
– Dr. Sonnhard Graubner
2 days ago




$begingroup$
I would sort the variables,$$a,b,c,d,e$$
$endgroup$
– Dr. Sonnhard Graubner
2 days ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

Since $d+e = a + 2$, we have:



$$2b + e = b + c + d = a + e + d = 2a + 2$$



so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



$$c = a + e - b = 3a + 2 - 3b$$



so that we have a 2-parameter set of solutions.



In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



As a sanity check:



$$a = 3$$
$$b = 2$$
$$c = 3^*3 - 3^*2 + 2 = 5$$
$$d = - 3 + 2^*2 = 1$$
$$e = 2^*3 - 2^*2 + 2 = 4$$



and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    Using the three equations in the order they are stated you get
    $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
    and, hence,
    $$2(c+1)=3e.$$
    This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Brute-forcing in Haskell:



        λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
        [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


        Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






        share|cite|improve this answer









        $endgroup$



















          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Since $d+e = a + 2$, we have:



          $$2b + e = b + c + d = a + e + d = 2a + 2$$



          so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



          $$c = a + e - b = 3a + 2 - 3b$$



          so that we have a 2-parameter set of solutions.



          In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



          Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



          As a sanity check:



          $$a = 3$$
          $$b = 2$$
          $$c = 3^*3 - 3^*2 + 2 = 5$$
          $$d = - 3 + 2^*2 = 1$$
          $$e = 2^*3 - 2^*2 + 2 = 4$$



          and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






          share|cite|improve this answer









          $endgroup$

















            2












            $begingroup$

            Since $d+e = a + 2$, we have:



            $$2b + e = b + c + d = a + e + d = 2a + 2$$



            so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



            $$c = a + e - b = 3a + 2 - 3b$$



            so that we have a 2-parameter set of solutions.



            In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



            Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



            As a sanity check:



            $$a = 3$$
            $$b = 2$$
            $$c = 3^*3 - 3^*2 + 2 = 5$$
            $$d = - 3 + 2^*2 = 1$$
            $$e = 2^*3 - 2^*2 + 2 = 4$$



            and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






            share|cite|improve this answer









            $endgroup$















              2












              2








              2





              $begingroup$

              Since $d+e = a + 2$, we have:



              $$2b + e = b + c + d = a + e + d = 2a + 2$$



              so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



              $$c = a + e - b = 3a + 2 - 3b$$



              so that we have a 2-parameter set of solutions.



              In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



              Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



              As a sanity check:



              $$a = 3$$
              $$b = 2$$
              $$c = 3^*3 - 3^*2 + 2 = 5$$
              $$d = - 3 + 2^*2 = 1$$
              $$e = 2^*3 - 2^*2 + 2 = 4$$



              and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






              share|cite|improve this answer









              $endgroup$



              Since $d+e = a + 2$, we have:



              $$2b + e = b + c + d = a + e + d = 2a + 2$$



              so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



              $$c = a + e - b = 3a + 2 - 3b$$



              so that we have a 2-parameter set of solutions.



              In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



              Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



              As a sanity check:



              $$a = 3$$
              $$b = 2$$
              $$c = 3^*3 - 3^*2 + 2 = 5$$
              $$d = - 3 + 2^*2 = 1$$
              $$e = 2^*3 - 2^*2 + 2 = 4$$



              and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 2 days ago









              NethesisNethesis

              1,9121823




              1,9121823





















                  1












                  $begingroup$

                  Using the three equations in the order they are stated you get
                  $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                  and, hence,
                  $$2(c+1)=3e.$$
                  This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






                  share|cite|improve this answer









                  $endgroup$

















                    1












                    $begingroup$

                    Using the three equations in the order they are stated you get
                    $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                    and, hence,
                    $$2(c+1)=3e.$$
                    This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






                    share|cite|improve this answer









                    $endgroup$















                      1












                      1








                      1





                      $begingroup$

                      Using the three equations in the order they are stated you get
                      $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                      and, hence,
                      $$2(c+1)=3e.$$
                      This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






                      share|cite|improve this answer









                      $endgroup$



                      Using the three equations in the order they are stated you get
                      $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                      and, hence,
                      $$2(c+1)=3e.$$
                      This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 2 days ago









                      Gerhard S.Gerhard S.

                      1,07529




                      1,07529





















                          1












                          $begingroup$

                          I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






                          share|cite|improve this answer









                          $endgroup$

















                            1












                            $begingroup$

                            I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






                            share|cite|improve this answer









                            $endgroup$















                              1












                              1








                              1





                              $begingroup$

                              I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






                              share|cite|improve this answer









                              $endgroup$



                              I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 days ago









                              Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                              77.7k42866




                              77.7k42866





















                                  0












                                  $begingroup$

                                  Brute-forcing in Haskell:



                                  λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                  [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                  Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    Brute-forcing in Haskell:



                                    λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                    [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                    Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Brute-forcing in Haskell:



                                      λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                      [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                      Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Brute-forcing in Haskell:



                                      λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                      [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                      Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 2 days ago









                                      Rodrigo de AzevedoRodrigo de Azevedo

                                      13k41960




                                      13k41960













                                          Popular posts from this blog

                                          Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                                          Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                                          Urgehal History Discography Band members References External links Navigation menu"Mediateket: Urgehal""Interview with Enzifer of Urgehal, 2007""Urgehal - Interview"Urgehal"Urgehal Frontman Trondr Nefas Dies at 35"Urgehal9042691cb161873230(data)0000 0001 0669 4224no2016126817ee6ccef6-e558-44b6-b059-dbbb5b913b24145036459145036459