Find integer solution [on hold]Solution of a system of linear equationsLinear systems. Please help me solve thisHint: Approach for the solution of the following three equationsSystem of Linear Equations with integer CoefficientsFor what value of $k$ does the linear system have a unique/infinite/no solutionsProblem trying to find kernel of a linear transformationFind the specific values for KHow does one find the solution y(n) from y(n+1)? (System of Difference Equations)System of equations. Find when it has one solution, multiple solutions or no solutionsFind the values of $a$, for which this system of linear equations has one solution, no solution, or infinite solutions

Accountant/ lawyer will not return my call

How do I express some one as a black person?

What is wrong with Escaped Shapeshifter's original wording?

How are such low op-amp input currents possible?

What to do when during a meeting client people start to fight (even physically) with each others?

PTIJ: How can I halachically kill a vampire?

Does "variables should live in the smallest scope as possible" include the case "variables should not exist if possible"?

Finding algorithms of QGIS commands?

They call me Inspector Morse

Solving "Resistance between two nodes on a grid" problem in Mathematica

Aliens englobed the Solar System: will we notice?

Is Gradient Descent central to every optimizer?

What is the meaning of triple curly braces in phtml template files? When and how do we use them?

Latest web browser compatible with Windows 98

Built-In Shelves/Bookcases - IKEA vs Built

Should QA ask requirements to developers?

2×2×2 rubik's cube corner is twisted!

A three room house but a three headED dog

Offered promotion but I'm leaving. Should I tell?

Unreachable code, but reachable with exception

Grey hair or white hair

Why would one plane in this picture not have gear down yet?

Make a transparent 448*448 image

MTG: Can I kill an opponent in response to lethal activated abilities, and not take the damage?



Find integer solution [on hold]


Solution of a system of linear equationsLinear systems. Please help me solve thisHint: Approach for the solution of the following three equationsSystem of Linear Equations with integer CoefficientsFor what value of $k$ does the linear system have a unique/infinite/no solutionsProblem trying to find kernel of a linear transformationFind the specific values for KHow does one find the solution y(n) from y(n+1)? (System of Difference Equations)System of equations. Find when it has one solution, multiple solutions or no solutionsFind the values of $a$, for which this system of linear equations has one solution, no solution, or infinite solutions













0












$begingroup$


I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.










share|cite|improve this question











$endgroup$



put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.















  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago















0












$begingroup$


I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.










share|cite|improve this question











$endgroup$



put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.















  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago













0












0








0





$begingroup$


I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.










share|cite|improve this question











$endgroup$




I have given $5$ integers from $1$ to $5$ which are unique. They solve the following equations:



$$beginalign
c+d&=b+e \
b+c&=a+e \
a-d&=e-2
endalign$$



However, I can't find the solution. I have tried various combinations but none seem to work.







linear-algebra systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Rodrigo de Azevedo

13k41960




13k41960










asked 2 days ago









ToribashToribash

375




375




put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.







put on hold as off-topic by TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos 2 days ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – TheSimpliFire, user21820, Servaes, Carl Mummert, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.











  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago
















  • $begingroup$
    I would sort the variables,$$a,b,c,d,e$$
    $endgroup$
    – Dr. Sonnhard Graubner
    2 days ago















$begingroup$
I would sort the variables,$$a,b,c,d,e$$
$endgroup$
– Dr. Sonnhard Graubner
2 days ago




$begingroup$
I would sort the variables,$$a,b,c,d,e$$
$endgroup$
– Dr. Sonnhard Graubner
2 days ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

Since $d+e = a + 2$, we have:



$$2b + e = b + c + d = a + e + d = 2a + 2$$



so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



$$c = a + e - b = 3a + 2 - 3b$$



so that we have a 2-parameter set of solutions.



In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



As a sanity check:



$$a = 3$$
$$b = 2$$
$$c = 3^*3 - 3^*2 + 2 = 5$$
$$d = - 3 + 2^*2 = 1$$
$$e = 2^*3 - 2^*2 + 2 = 4$$



and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    Using the three equations in the order they are stated you get
    $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
    and, hence,
    $$2(c+1)=3e.$$
    This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        Brute-forcing in Haskell:



        λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
        [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


        Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






        share|cite|improve this answer









        $endgroup$



















          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Since $d+e = a + 2$, we have:



          $$2b + e = b + c + d = a + e + d = 2a + 2$$



          so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



          $$c = a + e - b = 3a + 2 - 3b$$



          so that we have a 2-parameter set of solutions.



          In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



          Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



          As a sanity check:



          $$a = 3$$
          $$b = 2$$
          $$c = 3^*3 - 3^*2 + 2 = 5$$
          $$d = - 3 + 2^*2 = 1$$
          $$e = 2^*3 - 2^*2 + 2 = 4$$



          and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






          share|cite|improve this answer









          $endgroup$

















            2












            $begingroup$

            Since $d+e = a + 2$, we have:



            $$2b + e = b + c + d = a + e + d = 2a + 2$$



            so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



            $$c = a + e - b = 3a + 2 - 3b$$



            so that we have a 2-parameter set of solutions.



            In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



            Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



            As a sanity check:



            $$a = 3$$
            $$b = 2$$
            $$c = 3^*3 - 3^*2 + 2 = 5$$
            $$d = - 3 + 2^*2 = 1$$
            $$e = 2^*3 - 2^*2 + 2 = 4$$



            and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






            share|cite|improve this answer









            $endgroup$















              2












              2








              2





              $begingroup$

              Since $d+e = a + 2$, we have:



              $$2b + e = b + c + d = a + e + d = 2a + 2$$



              so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



              $$c = a + e - b = 3a + 2 - 3b$$



              so that we have a 2-parameter set of solutions.



              In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



              Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



              As a sanity check:



              $$a = 3$$
              $$b = 2$$
              $$c = 3^*3 - 3^*2 + 2 = 5$$
              $$d = - 3 + 2^*2 = 1$$
              $$e = 2^*3 - 2^*2 + 2 = 4$$



              and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.






              share|cite|improve this answer









              $endgroup$



              Since $d+e = a + 2$, we have:



              $$2b + e = b + c + d = a + e + d = 2a + 2$$



              so that $e = 2a + 2 - 2b$, and $d = -a + 2b$. We thus have:



              $$c = a + e - b = 3a + 2 - 3b$$



              so that we have a 2-parameter set of solutions.



              In summary, we have $a = a, b = b, c = 3a - 3b + 2, d = -a + 2b$, and $e = 2a - 2b + 2$.



              Now in order to find the required answer, we run through the possible values for $a, b$ in order to ensure that $c, d, e$ are in the required range and that $a, b, c, d, e$ are all distinct. One sees that $a = 3, b = 2$ works.



              As a sanity check:



              $$a = 3$$
              $$b = 2$$
              $$c = 3^*3 - 3^*2 + 2 = 5$$
              $$d = - 3 + 2^*2 = 1$$
              $$e = 2^*3 - 2^*2 + 2 = 4$$



              and so $c + d = 6 = b + e$, $b + c = 7 = a + e$, and $a - d = 2 = e - 2$, as required.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 2 days ago









              NethesisNethesis

              1,9121823




              1,9121823





















                  1












                  $begingroup$

                  Using the three equations in the order they are stated you get
                  $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                  and, hence,
                  $$2(c+1)=3e.$$
                  This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






                  share|cite|improve this answer









                  $endgroup$

















                    1












                    $begingroup$

                    Using the three equations in the order they are stated you get
                    $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                    and, hence,
                    $$2(c+1)=3e.$$
                    This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






                    share|cite|improve this answer









                    $endgroup$















                      1












                      1








                      1





                      $begingroup$

                      Using the three equations in the order they are stated you get
                      $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                      and, hence,
                      $$2(c+1)=3e.$$
                      This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.






                      share|cite|improve this answer









                      $endgroup$



                      Using the three equations in the order they are stated you get
                      $$c=b+e-d=(a+e-c)+e-d=((d+e-2)+e-c)+e-d$$
                      and, hence,
                      $$2(c+1)=3e.$$
                      This proves that $c+1$ must be divisible by 3 and $e$ must be divisible by 2. If $c+1$ were equal to 3, then $c$ would have to be equal to 2 and, hence, $e$ would have to be equal to 2. Since $c=e$ is not allowed, we must have $c=5$ and $e=4$. It is now easy to derive the values for $a$, $b$, and $d$ from the three equations: $a=3$, $b=2$, and $d=1$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 2 days ago









                      Gerhard S.Gerhard S.

                      1,07529




                      1,07529





















                          1












                          $begingroup$

                          I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






                          share|cite|improve this answer









                          $endgroup$

















                            1












                            $begingroup$

                            I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






                            share|cite|improve this answer









                            $endgroup$















                              1












                              1








                              1





                              $begingroup$

                              I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.






                              share|cite|improve this answer









                              $endgroup$



                              I have got $$a=C_1,b=C_2,c=2+3C_1,d=-C_1+2C_2,e=2+2C_1-2C_2$$ where $$C_1,C_2$$ are integer numbers.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 days ago









                              Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                              77.7k42866




                              77.7k42866





















                                  0












                                  $begingroup$

                                  Brute-forcing in Haskell:



                                  λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                  [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                  Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    Brute-forcing in Haskell:



                                    λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                    [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                    Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Brute-forcing in Haskell:



                                      λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                      [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                      Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Brute-forcing in Haskell:



                                      λ> filter ((a,b,c,d,e) -> c+d==b+e && b+c==a+e && a-d==e-2) [ (a,b,c,d,e) | a <- [1..5], b <- [1..5], c <- [1..5], d <- [1..5], e <- [1..5] ]
                                      [(1,1,2,1,2),(2,2,2,2,2),(3,2,5,1,4),(3,3,2,3,2),(4,3,5,2,4),(4,4,2,4,2),(5,4,5,3,4),(5,5,2,5,2)]


                                      Of the eight solutions, the only $5$-tuple that is admissible (no repetitions) is $(3,2,5,1,4)$, which is the solution found by Nethesis and Gerhard.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 2 days ago









                                      Rodrigo de AzevedoRodrigo de Azevedo

                                      13k41960




                                      13k41960













                                          Popular posts from this blog

                                          Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

                                          John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

                                          Sum infinite sum for a complex variable not in the integers The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of the infinite product $prod_n = 1^infty fracz - alpha_nz - beta_n$Suppose $sum_k=-infty^inftya_kz^k$ and $sum_-infty^inftyb_kz^k$ converge to $1/sin(pi z)$. Find $b_k-a_k$.Laurent series of $ 1over (z - i) $Laurent series for $z^2 e^1/z$ at $z = infty$Write $sumlimits_n=0^infty e^-xn^3$ in the form $sumlimits_n=-infty^infty a_nx^n$Help needed on laurent series for a complex functionShow that $sum_-infty^infty (-1)^nexp(nz-frac12(n+frac12)^2omega)$ converges and is entireΑn entire function as an infinite sum of entire functionsClassify singularities in the extended complex planeFinding the laurent series around z = 0