Conjectured value of a harmonic sum $sum_n=1^inftyleft(H_n-,2H_2n+H_4nright)^2$Infinite Series $sum_n=1^inftyfracH_nn^32^n$Sum of Squares of Harmonic NumbersA closed form of $sum_n=1^inftyleft[ H_n^2-left(ln n+gamma+frac12n right)^2right]$Closed form for $sum_n=1^inftyfrac(-1)^n n^4 H_n2^n$Closed form for $sum_n=1^inftyfrac(-1)^n n^a H_n2^n$A closed form of the series $sum_n=1^infty fracH_n^2-(gamma + ln n)^2n$Infinite Series $sum_n=1^inftyfracH_nn^32^n$A conjectured result for $sum_n=1^inftyfrac(-1)^n,H_n/5n$Strategies for evaluating sums $sum_n=1^infty fracH_n^(m)z^nn$How to evaluate $lim_nrightarrow infty nleft [ widetildeH_n-H_2n+H_n right ]$?What's about $sum_n=1^infty frace^H_nlog H_nn^3$, where $H_n$ is the nth harmonic number?A closed form of $sum_n=1^inftyleft[ H_n^2-left(ln n+gamma+frac12n right)^2right]$Justify an approximation of $-sum_n=2^infty H_nleft(frac1zeta(n)-1right)$, where $H_n$ denotes the $n$th harmonic number

Good allowance savings plan?

Should QA ask requirements to developers?

Is it true that real estate prices mainly go up?

How did Alan Turing break the enigma code using the hint given by the lady in the bar?

Offered promotion but I'm leaving. Should I tell?

BitNot does not flip bits in the way I expected

How strictly should I take "Candidates must be local"?

How could our ancestors have domesticated a solitary predator?

Unreachable code, but reachable with exception

Make a transparent 448*448 image

Why does Captain Marvel assume the planet where she lands would recognize her credentials?

Is "history" a male-biased word ("his+story")?

Peter's Strange Word

Can you reject a postdoc offer after the PI has paid a large sum for flights/accommodation for your visit?

Can't find the Shader/UVs tab

What to do when during a meeting client people start to fight (even physically) with each others?

How are such low op-amp input currents possible?

Is there an equal sign with wider gap?

Low budget alien movie about the Earth being cooked

2×2×2 rubik's cube corner is twisted!

How do I express some one as a black person?

Do Bugbears' arms literally get longer when it's their turn?

Subset counting for even numbers

Placing subfig vertically



Conjectured value of a harmonic sum $sum_n=1^inftyleft(H_n-,2H_2n+H_4nright)^2$


Infinite Series $sum_n=1^inftyfracH_nn^32^n$Sum of Squares of Harmonic NumbersA closed form of $sum_n=1^inftyleft[ H_n^2-left(ln n+gamma+frac12n right)^2right]$Closed form for $sum_n=1^inftyfrac(-1)^n n^4 H_n2^n$Closed form for $sum_n=1^inftyfrac(-1)^n n^a H_n2^n$A closed form of the series $sum_n=1^infty fracH_n^2-(gamma + ln n)^2n$Infinite Series $sum_n=1^inftyfracH_nn^32^n$A conjectured result for $sum_n=1^inftyfrac(-1)^n,H_n/5n$Strategies for evaluating sums $sum_n=1^infty fracH_n^(m)z^nn$How to evaluate $lim_nrightarrow infty nleft [ widetildeH_n-H_2n+H_n right ]$?What's about $sum_n=1^infty frace^H_nlog H_nn^3$, where $H_n$ is the nth harmonic number?A closed form of $sum_n=1^inftyleft[ H_n^2-left(ln n+gamma+frac12n right)^2right]$Justify an approximation of $-sum_n=2^infty H_nleft(frac1zeta(n)-1right)$, where $H_n$ denotes the $n$th harmonic number













46












$begingroup$


There is a known asymptotic expansion of harmonic numbers $H_n$ for $ntoinfty$:
$$beginalignH_n&=gamma+ln n+sum_k=1^inftyleft(-fracB_kkcdot n^kright)\
&=gamma+ln n+frac12n-frac112n^2+frac1120n^4-frac1252n^6,+,dots,endaligntag1$$
where $B_k$ are Bernoulli numbers.
We can take a linear combination of harmonic numbers to cancel constant and logarithmic terms, compensate for $O(n^-1)$ term, and get the following series that is possible to evaluate in a closed form (e.g. using generating function):
$$sum_k=1^inftyleft(H_n-,2H_2n+H_4n-frac18nright)=frac18-fracpi16.tag2$$
Rather than compensating for $O(n^-1)$ term, we can take a series with alternating signs, that is also possible to evaluate in a closed form:
$$sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)=frac3pi16-fracpi4sqrt2-fracln28.tag3$$
Generalizing, we can consider two families of series:
$$mathcal A_m=sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)^m,tag4$$
$$mathcal B_m=sum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^m,tag5$$
and try to evaluate them in a closed form.




So far I have the following conjectured result:




$$largesum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^2stackrelnormalsizecolorgray?=fracpi8-fracpi16,ln2-fracpi^296+frac316,ln^22-fracG4,tag$diamond$$$




where $G$ is the Catalan constant.



Could you please help me to prove this result and, possibly, find other values of $mathcal A_m,mathcal B_m$?










share|cite|improve this question









$endgroup$





This question has an open bounty worth +50
reputation from TheSimpliFire ending ending at 2019-03-17 09:11:13Z">in 4 days.


One or more of the answers is exemplary and worthy of an additional bounty.















  • $begingroup$
    Some possibly related questions are linked from here.
    $endgroup$
    – Piotr Shatalin
    Aug 22 '15 at 18:18






  • 3




    $begingroup$
    BTW, another similar series can be evaluated using generating functions: $sum_n=1^inftyfrac1nleft(H_n-,2H_2n+H_4nright)=frac34 ln^2 2-fracpi^248.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:07







  • 2




    $begingroup$
    And another: $sum_n=1^inftyfrac(-1)^nnleft(H_n-,2H_2n+H_4nright)=frac12 ln^2!left(1+sqrt2right)+frac18 ln^2 2-frac5pi^296.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:43










  • $begingroup$
    One way to tackle it, at least the case $m=2$, would be to write $H_n=int_0^1frac1-x^n1-xdx$ and to convert the series into a double integral which probably could be evaluated more easily. But I think this is what we call "Brute Force".
    $endgroup$
    – Redundant Aunt
    Aug 22 '15 at 19:56







  • 4




    $begingroup$
    One more simple series where $O(n^-1)$ term is cancelled using harmonic numbers only: $sum_n=1^inftyleft(H_n-4H_2n+5H_4n-2H_8nright)=fracpi4sqrt2 - frac3pi16.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 22:14
















46












$begingroup$


There is a known asymptotic expansion of harmonic numbers $H_n$ for $ntoinfty$:
$$beginalignH_n&=gamma+ln n+sum_k=1^inftyleft(-fracB_kkcdot n^kright)\
&=gamma+ln n+frac12n-frac112n^2+frac1120n^4-frac1252n^6,+,dots,endaligntag1$$
where $B_k$ are Bernoulli numbers.
We can take a linear combination of harmonic numbers to cancel constant and logarithmic terms, compensate for $O(n^-1)$ term, and get the following series that is possible to evaluate in a closed form (e.g. using generating function):
$$sum_k=1^inftyleft(H_n-,2H_2n+H_4n-frac18nright)=frac18-fracpi16.tag2$$
Rather than compensating for $O(n^-1)$ term, we can take a series with alternating signs, that is also possible to evaluate in a closed form:
$$sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)=frac3pi16-fracpi4sqrt2-fracln28.tag3$$
Generalizing, we can consider two families of series:
$$mathcal A_m=sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)^m,tag4$$
$$mathcal B_m=sum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^m,tag5$$
and try to evaluate them in a closed form.




So far I have the following conjectured result:




$$largesum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^2stackrelnormalsizecolorgray?=fracpi8-fracpi16,ln2-fracpi^296+frac316,ln^22-fracG4,tag$diamond$$$




where $G$ is the Catalan constant.



Could you please help me to prove this result and, possibly, find other values of $mathcal A_m,mathcal B_m$?










share|cite|improve this question









$endgroup$





This question has an open bounty worth +50
reputation from TheSimpliFire ending ending at 2019-03-17 09:11:13Z">in 4 days.


One or more of the answers is exemplary and worthy of an additional bounty.















  • $begingroup$
    Some possibly related questions are linked from here.
    $endgroup$
    – Piotr Shatalin
    Aug 22 '15 at 18:18






  • 3




    $begingroup$
    BTW, another similar series can be evaluated using generating functions: $sum_n=1^inftyfrac1nleft(H_n-,2H_2n+H_4nright)=frac34 ln^2 2-fracpi^248.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:07







  • 2




    $begingroup$
    And another: $sum_n=1^inftyfrac(-1)^nnleft(H_n-,2H_2n+H_4nright)=frac12 ln^2!left(1+sqrt2right)+frac18 ln^2 2-frac5pi^296.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:43










  • $begingroup$
    One way to tackle it, at least the case $m=2$, would be to write $H_n=int_0^1frac1-x^n1-xdx$ and to convert the series into a double integral which probably could be evaluated more easily. But I think this is what we call "Brute Force".
    $endgroup$
    – Redundant Aunt
    Aug 22 '15 at 19:56







  • 4




    $begingroup$
    One more simple series where $O(n^-1)$ term is cancelled using harmonic numbers only: $sum_n=1^inftyleft(H_n-4H_2n+5H_4n-2H_8nright)=fracpi4sqrt2 - frac3pi16.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 22:14














46












46








46


22



$begingroup$


There is a known asymptotic expansion of harmonic numbers $H_n$ for $ntoinfty$:
$$beginalignH_n&=gamma+ln n+sum_k=1^inftyleft(-fracB_kkcdot n^kright)\
&=gamma+ln n+frac12n-frac112n^2+frac1120n^4-frac1252n^6,+,dots,endaligntag1$$
where $B_k$ are Bernoulli numbers.
We can take a linear combination of harmonic numbers to cancel constant and logarithmic terms, compensate for $O(n^-1)$ term, and get the following series that is possible to evaluate in a closed form (e.g. using generating function):
$$sum_k=1^inftyleft(H_n-,2H_2n+H_4n-frac18nright)=frac18-fracpi16.tag2$$
Rather than compensating for $O(n^-1)$ term, we can take a series with alternating signs, that is also possible to evaluate in a closed form:
$$sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)=frac3pi16-fracpi4sqrt2-fracln28.tag3$$
Generalizing, we can consider two families of series:
$$mathcal A_m=sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)^m,tag4$$
$$mathcal B_m=sum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^m,tag5$$
and try to evaluate them in a closed form.




So far I have the following conjectured result:




$$largesum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^2stackrelnormalsizecolorgray?=fracpi8-fracpi16,ln2-fracpi^296+frac316,ln^22-fracG4,tag$diamond$$$




where $G$ is the Catalan constant.



Could you please help me to prove this result and, possibly, find other values of $mathcal A_m,mathcal B_m$?










share|cite|improve this question









$endgroup$




There is a known asymptotic expansion of harmonic numbers $H_n$ for $ntoinfty$:
$$beginalignH_n&=gamma+ln n+sum_k=1^inftyleft(-fracB_kkcdot n^kright)\
&=gamma+ln n+frac12n-frac112n^2+frac1120n^4-frac1252n^6,+,dots,endaligntag1$$
where $B_k$ are Bernoulli numbers.
We can take a linear combination of harmonic numbers to cancel constant and logarithmic terms, compensate for $O(n^-1)$ term, and get the following series that is possible to evaluate in a closed form (e.g. using generating function):
$$sum_k=1^inftyleft(H_n-,2H_2n+H_4n-frac18nright)=frac18-fracpi16.tag2$$
Rather than compensating for $O(n^-1)$ term, we can take a series with alternating signs, that is also possible to evaluate in a closed form:
$$sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)=frac3pi16-fracpi4sqrt2-fracln28.tag3$$
Generalizing, we can consider two families of series:
$$mathcal A_m=sum_n=1^infty,(-1)^n,Big(H_n-,2H_2n+H_4nBig)^m,tag4$$
$$mathcal B_m=sum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^m,tag5$$
and try to evaluate them in a closed form.




So far I have the following conjectured result:




$$largesum_n=1^inftyBig(H_n-,2H_2n+H_4nBig)^2stackrelnormalsizecolorgray?=fracpi8-fracpi16,ln2-fracpi^296+frac316,ln^22-fracG4,tag$diamond$$$




where $G$ is the Catalan constant.



Could you please help me to prove this result and, possibly, find other values of $mathcal A_m,mathcal B_m$?







calculus sequences-and-series closed-form conjectures harmonic-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Aug 22 '15 at 17:46









Vladimir ReshetnikovVladimir Reshetnikov

24.5k5120235




24.5k5120235






This question has an open bounty worth +50
reputation from TheSimpliFire ending ending at 2019-03-17 09:11:13Z">in 4 days.


One or more of the answers is exemplary and worthy of an additional bounty.








This question has an open bounty worth +50
reputation from TheSimpliFire ending ending at 2019-03-17 09:11:13Z">in 4 days.


One or more of the answers is exemplary and worthy of an additional bounty.













  • $begingroup$
    Some possibly related questions are linked from here.
    $endgroup$
    – Piotr Shatalin
    Aug 22 '15 at 18:18






  • 3




    $begingroup$
    BTW, another similar series can be evaluated using generating functions: $sum_n=1^inftyfrac1nleft(H_n-,2H_2n+H_4nright)=frac34 ln^2 2-fracpi^248.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:07







  • 2




    $begingroup$
    And another: $sum_n=1^inftyfrac(-1)^nnleft(H_n-,2H_2n+H_4nright)=frac12 ln^2!left(1+sqrt2right)+frac18 ln^2 2-frac5pi^296.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:43










  • $begingroup$
    One way to tackle it, at least the case $m=2$, would be to write $H_n=int_0^1frac1-x^n1-xdx$ and to convert the series into a double integral which probably could be evaluated more easily. But I think this is what we call "Brute Force".
    $endgroup$
    – Redundant Aunt
    Aug 22 '15 at 19:56







  • 4




    $begingroup$
    One more simple series where $O(n^-1)$ term is cancelled using harmonic numbers only: $sum_n=1^inftyleft(H_n-4H_2n+5H_4n-2H_8nright)=fracpi4sqrt2 - frac3pi16.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 22:14

















  • $begingroup$
    Some possibly related questions are linked from here.
    $endgroup$
    – Piotr Shatalin
    Aug 22 '15 at 18:18






  • 3




    $begingroup$
    BTW, another similar series can be evaluated using generating functions: $sum_n=1^inftyfrac1nleft(H_n-,2H_2n+H_4nright)=frac34 ln^2 2-fracpi^248.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:07







  • 2




    $begingroup$
    And another: $sum_n=1^inftyfrac(-1)^nnleft(H_n-,2H_2n+H_4nright)=frac12 ln^2!left(1+sqrt2right)+frac18 ln^2 2-frac5pi^296.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 19:43










  • $begingroup$
    One way to tackle it, at least the case $m=2$, would be to write $H_n=int_0^1frac1-x^n1-xdx$ and to convert the series into a double integral which probably could be evaluated more easily. But I think this is what we call "Brute Force".
    $endgroup$
    – Redundant Aunt
    Aug 22 '15 at 19:56







  • 4




    $begingroup$
    One more simple series where $O(n^-1)$ term is cancelled using harmonic numbers only: $sum_n=1^inftyleft(H_n-4H_2n+5H_4n-2H_8nright)=fracpi4sqrt2 - frac3pi16.$
    $endgroup$
    – Vladimir Reshetnikov
    Aug 22 '15 at 22:14
















$begingroup$
Some possibly related questions are linked from here.
$endgroup$
– Piotr Shatalin
Aug 22 '15 at 18:18




$begingroup$
Some possibly related questions are linked from here.
$endgroup$
– Piotr Shatalin
Aug 22 '15 at 18:18




3




3




$begingroup$
BTW, another similar series can be evaluated using generating functions: $sum_n=1^inftyfrac1nleft(H_n-,2H_2n+H_4nright)=frac34 ln^2 2-fracpi^248.$
$endgroup$
– Vladimir Reshetnikov
Aug 22 '15 at 19:07





$begingroup$
BTW, another similar series can be evaluated using generating functions: $sum_n=1^inftyfrac1nleft(H_n-,2H_2n+H_4nright)=frac34 ln^2 2-fracpi^248.$
$endgroup$
– Vladimir Reshetnikov
Aug 22 '15 at 19:07





2




2




$begingroup$
And another: $sum_n=1^inftyfrac(-1)^nnleft(H_n-,2H_2n+H_4nright)=frac12 ln^2!left(1+sqrt2right)+frac18 ln^2 2-frac5pi^296.$
$endgroup$
– Vladimir Reshetnikov
Aug 22 '15 at 19:43




$begingroup$
And another: $sum_n=1^inftyfrac(-1)^nnleft(H_n-,2H_2n+H_4nright)=frac12 ln^2!left(1+sqrt2right)+frac18 ln^2 2-frac5pi^296.$
$endgroup$
– Vladimir Reshetnikov
Aug 22 '15 at 19:43












$begingroup$
One way to tackle it, at least the case $m=2$, would be to write $H_n=int_0^1frac1-x^n1-xdx$ and to convert the series into a double integral which probably could be evaluated more easily. But I think this is what we call "Brute Force".
$endgroup$
– Redundant Aunt
Aug 22 '15 at 19:56





$begingroup$
One way to tackle it, at least the case $m=2$, would be to write $H_n=int_0^1frac1-x^n1-xdx$ and to convert the series into a double integral which probably could be evaluated more easily. But I think this is what we call "Brute Force".
$endgroup$
– Redundant Aunt
Aug 22 '15 at 19:56





4




4




$begingroup$
One more simple series where $O(n^-1)$ term is cancelled using harmonic numbers only: $sum_n=1^inftyleft(H_n-4H_2n+5H_4n-2H_8nright)=fracpi4sqrt2 - frac3pi16.$
$endgroup$
– Vladimir Reshetnikov
Aug 22 '15 at 22:14





$begingroup$
One more simple series where $O(n^-1)$ term is cancelled using harmonic numbers only: $sum_n=1^inftyleft(H_n-4H_2n+5H_4n-2H_8nright)=fracpi4sqrt2 - frac3pi16.$
$endgroup$
– Vladimir Reshetnikov
Aug 22 '15 at 22:14











2 Answers
2






active

oldest

votes


















22





+50







$begingroup$

So basically, I'll evaluate a bunch of integrals, trying to avoid polylogs as much as possible.



First thing is to notice that $displaystyle H_n-2H_2n+H_4n=int_0^1 fracx^2n-x^4n1+xdx$.
I noticed that $H_n-2H_2n+H_4n=H_4n-H_2n-(H_2n-H_n)=H_4n^--H_2n^-$, where $H_n^-=sum_k=1^n frac(-1)^k+1k$ is called
a skew harmonic number (at least by Khristo N. Boyadzhiev. link.) Knowing they have a simple intergal representation I found the above. My answer is influenced by Boyadzhiev's work.
If I make any unexplainable substitution, it's most likely $t=frac1-x1+x$.
Also, I'm not very good with Latex, so alignment should be awful. Hopefully there are no typos.



Below, easy enough to prove, is what I take for granted:
$ -lnsin x=ln2+sum_n=1^infty fraccos(2nx)n ,-lncos x=ln2+sum_n=1^infty frac(-1)^ncos(2nx)n tag1$



$$ int_0^fracpi2 cos x cos(nx)dx=begincases fracpi4 &n=1\0 &n ,,textodd\ frac(-1)^1+n/2n^2-1 &n ,,texteven endcases tag2$$



$$ int_0^1 fracln(1-x)a+xdx=-operatornameLi_2left(frac1a+1right)tag3$$
Starting,
$$sum_n=0^infty(H_n-2H_2n+H_4n)^2=sum_n=0^inftyint_0^1int_0^1frac(x^2n-x^4n)(u^2n-u^4n)(1+x)(1+u)dxdu
\=smallint_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)-2int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^4)+int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^4)
\=I_22-2I_24+I_44$$




Computing $I_22$.



Substitute $u=fracyx$ ,change the order of integration, evaluate the inner integral, and substitue $t=frac1-x1+x$ to get
$$beginalign I_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)=int_0^1int_0^xfracdydx(1+x)(x+y)(1-y^2)
\=int_0^1 frac11-y^2int_1^y fracdx(1+x)(x+y) dy=int_0^1 fraclnleft(frac(1+x)^24xright)(1+x)(1-x^2),dx
\=frac-14int_0^1 frac(1+t)t^2ln(1-t^2)dt=-frac14int_0^1fracln(1-t^2)t^2dt-frac14int_0^1fracln(1-t^2)tdt
\=frac14sum_n=0^infty frac1(n+1)(2n+1)+frac14sum_n=0^infty frac1(n+1)(2n+2)=fracln22+fracpi^248.endalign$$




Computing $I_44$.



Start the same as with $I_22$ to get $displaystyle I_44=int_0^1 fraclnleft(frac(1+x)^24xright)(1-x)(1-x^4),dx=frac-18int_0^1 fracln(1-t^2)t^2(1+t^2)(1+t)^3dt$.
We can calculate these integrals:
$$beginalign int_0^1 fracln(1-x^2)1+x^2dx=int_0^1 fracln(1+x)1+x^2dx+int_0^1 fracln(1-x)1+x^2dx tag4
\=int_0^1 fracln(1+x)1+x^2dx +int_0^1 fraclnleft(frac2t1+tright)1+t^2dt
\=fracpi4ln2+sum_n=0^infty (-1)^nint_0^1ln(t) t^2ndt=fracpi4ln2-G. endalign$$
$$beginalign int_0^1 fracln(1-x^2)x^2(1+x^2)dx=int_0^1 fracln(1-x^2)x^2dx-int_0^1 fracln(1-x^2)1+x^2dx tag5
\=-sum_n=0^infty frac1n+1int_0^1 x^2ndx-fracpi4ln2+G=G-fracpi4ln2-2ln2.endalign$$
$$beginalign int_0^1 fracxln(1-x^2)1+x^2dx=frac12int_0^1 fracln(1-x)1+xdx tag6
\=-frac12 operatornameLi_2left(frac12right)=fracln^2 24-fracpi^224.endalign$$
$$beginalign int_0^1 fracln(1-x^2)x(1+x^2)dx=int_0^1 fracln(1-x^2)xdx-int_0^1 fracxln(1-x^2)1+x^2dx tag7
\=-sum_n=0^inftyfrac1n+1int_0^1 x^2n+1dx-fracln^2 24+fracpi^224=-fracpi^224-fracln^2 24.endalign$$
Altogether,
$$I_44=frac-18int_0^1 fracln(1-x^2)x^2(1+x^2)(1+3x+3x^2+x^3)dx
\=-fracpi16ln2+fracln24+fracln^2 216+fracpi^248+fracG4.$$




Computing $I_24$.



Substitute $u=fracyx^2$, change the order of integration, let $yto y^2$, evaluate the inner integral,and substitue $t=frac1-x1+x$:
$$beginalign* I_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^2)=int_0^1int_0^x^2 fracdydx(1+x)(x^2+y)(1-y^2)
\=int_0^1 frac11-y^2int_sqrty^1fracdx(1+x)(x^2+y)dy=2int_0^1fracy1-y^4int_y^1fracdx(1+x)(x^2+y^2)dy
\=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1-x^4)dx
=I_241-I_242. endalign*$$




Evaulation of $I_241$.



Substitute $t=frac1-x1+x$ to get $displaystyle I_241=frac14int_0^1 fractan^-1(t)t(1+t^2)^2(1+t)^4dt$.



We can calculate these integrals.In the following, let $x=tantheta$:
$$beginalign int_0^1 fractan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetacos^2(theta)dtheta=fracpi^264+fracpi16-frac18.tag8endalign$$
$$beginalign int_0^1 fracxtan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetatanthetacos^2thetadtheta=frac12int_0^fracpi4thetasin(2theta)dtheta=frac18.tag9endalign$$
$$beginalign int_0^1 fracx^2tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^2(theta)dtheta=fracpi^264-fracpi16+frac18.tag10endalign$$
$$beginalign int_0^1 fracx^3tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^3(theta)sectheta,dtheta tag11
\=int_0^fracpi4thetatantheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=fracpi8ln2-frac18+int_0^fracpi4lncostheta ,dtheta
\=fracpi8ln2-frac18-int_0^fracpi4ln2 ,dtheta-sum_n=1^infty frac(-1)^nnint_0^fracpi4cos(2ntheta),dtheta
\=-fracpi8ln2-frac18+frac12sum_n=1^inftyfrac(-1)^n+1n^2sin(fracpi n2)=fracG2-fracpi8ln2-frac18.endalign$$
$$beginalign int_0^1 fractan^-1(x)x(1+x^2)^2dx=int_0^fracpi4thetacos^3(theta)csctheta,dtheta tag12
\=int_0^fracpi4thetacottheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=-frac18-fracpi8ln2-int_0^fracpi4lnsintheta ,dtheta
\=-frac18-fracpi8ln2+int_0^fracpi4ln2 ,dtheta+sum_n=1^inftyfrac1nint_0^fracpi4cos(2ntheta),dtheta
\=-frac18+fracpi8ln2+frac12sum_n=1^infty fracsin(fracpi n2)n^2=fracG2+fracpi8ln2-frac18.endalign$$
Altogether,
$$I_241=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx= frac14int_0^1 fractan^-1(x)x(1+x^2)^2(1+4x+6x^2+4x^3+x^4)dx
\=fracpi^232+frac18+fracG4$$




Evaulation of $I_242$.



Substitute $t=frac1-x1+x$ to get
$$ I_242=frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)^2(1-t^2)(1+t)^2dt
\=frac12int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)(1+t^2)^2(1-t^2)dt+frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)(1-t^2)dt
\=frac12int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx-frac14int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx\+frac18int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx-frac14int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx
$$
Calculating these integrals:
$$beginalign int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx=-frac12int_0^1 fraclnleft(frac1-x1+xright)sqrtx(1+x)frac1-x1+xdx tag13
\=-frac12int_0^1fractln tsqrt1-t^2dt=-frac18int_0^1fracln tsqrt1-tdt=-frac18int_0^1 t^-1/2ln(1-t)dt
\=frac14sum_n=0^infty frac1(n+1)(2n+3)=frac12-fracln22.endalign$$
$$beginalign int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1+x)(1-x)x(1+x)dx tag14
\=frac12int_0^1fracln(1+x)xdx-int_0^1fracln(1+x)1+xdx
\=frac12sum_n=0^inftyfrac(-1)^n+1n+1int_0^1 x^n dx-frac12ln^2(1+x)bigg_0^1=fracpi^224-fracln^2 22.endalign$$
$$beginalign int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1-x)xdx-int_0^1fracln(1-x)1+xdx tag15
\=-fracpi^212-left(fracln^2 22-fracpi^212right)=-fracln^2 22.endalign$$
$$
int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx=-2int_0^fracpi4cos^2(theta)(1-tan^2theta)lncostheta,dtheta tag16
\=-2int_0^fracpi4cos(2theta)lncostheta,dtheta=2ln2int_0^fracpi4cos(2theta)dtheta+sum_n=1^infty frac(-1)^nnint_0^fracpi2costheta cos(ntheta)dtheta
\=ln2-fracpi4+sum_n=1^infty frac(-1)^2n2nfrac(-1)^n+1(2n)^2-1=fracln22-fracpi4+frac12.$$
Altogether, $displaystyle I_242=fracpi^2192+fracpi16+fracln^2 216-frac3ln28+frac18$,



leading to $displaystyle I_24=I_241-I_242=frac5pi^2192-fracpi16-fracln^2 216+frac3ln28+fracG4$,
and finally, confirming the conjecture,
$$sum_n=0^infty(H_n-2H_2n+H_4n)^2=I_22-2I_24+I_44=fracpi8-fracpi16ln2-fracpi^296+frac3ln^2 216-fracG4.$$




I don't know about higher powers. I guess the case $mathcal A_2$ can also be done. If we start the same as with $mathcal B_2$, writing $mathcal A_2=J_22-2J_24+J_44$
we can find that $displaystyle J_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^2u^2)=2I_44-I_22=-fracpi8ln2+fracG2+fracpi^248+fracln^2 28$



$J_44$ can be reduced to $displaystyle =-frac12int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx$.
already this i can't evaulate fully, as polylogs are inescapable. Factorizing $x^2+6x+1=(x+3+2sqrt2)(x+3-2sqrt2).$



I can get $displaystyle int_0^1 fracln(1-x^2)x(x^4+6x^2+1)dx=-fracpi^212+frac4-3sqrt216operatornameLi_2left(frac2-sqrt24right)+frac4+3sqrt216operatornameLi_2left(frac2+sqrt24right)$



but nothing more.



Edit 1.



After some more work and a fair amount of cancellation, we obtain
$$int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx=frac1+2sqrt24piln2-fracpi^224-frac14lnleft(frac2+sqrt24right)lnleft(frac2-sqrt24right)
-fracsqrt2+12ImoperatornameLi_2left(frac2+sqrt22+fracisqrt22right)-fracsqrt2-12ImoperatornameLi_2left(frac2-sqrt22+fracisqrt22right)$$



I obtained it by calculating $displaystyle int_0^1 fracln(1+x)x+adx=ln2lnleft(fraca+1a-1right)+operatornameLi_2left(frac21-aright)-operatornameLi_2left(frac11-aright)$,
which together with $(3)$ can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x+adx$, which in turn, through partial fractions, can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x^2+a^2dx$.
Fortunately, things didn't get too ugly as both $3+2sqrt2$ and $3-2sqrt2$ have nice square roots. I will fill in details as soon as I can.



Now we just need to evaluate $J_24$. Starting similarly as with $I_24$,
we have:
$$J_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^4u^2)
\=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1+x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1+x^4)dx
\=J_241-J_242$$



Through $t=frac1-x1+x$, $J_241$ turns to $displaystyle int_0^1 fractan^-1(x)(1+x^2)(x^4+6x^2+1)(1+x)^4,dx$. I don't have any idea about that yet. Edit 1.






share|cite|improve this answer











$endgroup$




















    8





    +50







    $begingroup$

    Just my thoughts for now: I would try to exploit Parseval's identity. For first, we have:
    $$ H_n-2H_2n+H_4n =int_0^1frac-x^n+2x^2n-x^4n1-x,dx tag1 $$
    and:
    $$ sum_ngeq 1frac-x^n+2x^2n-x^4n1-xe^niy = frac11-xleft(frac-11-e^iyx+frac21-e^iyx^2+frac-11-e^iyx^4right).tag2$$
    The poles of the RHS (as a function of $x$) are located at $xinlefte^-iy,pm e^-iy/2,pm e^-iy/4,pm i e^-iy/4right$.



    By using the residue theorem we may compute an explicit representation for:
    $$ g(y) = sum_ngeq 1left(H_n-2H_2n+H_4nright)e^niy,tag3 $$
    then Parseval's theorem gives:
    $$ sum_ngeq 1left(H_n-2H_2n+H_4nright)^2 = frac12piint_-pi^pig(y)g(-y),dy tag4$$
    and the resulting integral should be not to difficult to evaluate in terms of dilogarithms.



    Another chance may be to apply summation by parts (like I did in this question), but it looks lengthy.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
      $endgroup$
      – Winther
      Sep 1 '15 at 15:26










    • $begingroup$
      @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
      $endgroup$
      – Jack D'Aurizio
      Sep 1 '15 at 15:35










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1406122%2fconjectured-value-of-a-harmonic-sum-sum-n-1-infty-lefth-n-2h-2nh-4n%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    22





    +50







    $begingroup$

    So basically, I'll evaluate a bunch of integrals, trying to avoid polylogs as much as possible.



    First thing is to notice that $displaystyle H_n-2H_2n+H_4n=int_0^1 fracx^2n-x^4n1+xdx$.
    I noticed that $H_n-2H_2n+H_4n=H_4n-H_2n-(H_2n-H_n)=H_4n^--H_2n^-$, where $H_n^-=sum_k=1^n frac(-1)^k+1k$ is called
    a skew harmonic number (at least by Khristo N. Boyadzhiev. link.) Knowing they have a simple intergal representation I found the above. My answer is influenced by Boyadzhiev's work.
    If I make any unexplainable substitution, it's most likely $t=frac1-x1+x$.
    Also, I'm not very good with Latex, so alignment should be awful. Hopefully there are no typos.



    Below, easy enough to prove, is what I take for granted:
    $ -lnsin x=ln2+sum_n=1^infty fraccos(2nx)n ,-lncos x=ln2+sum_n=1^infty frac(-1)^ncos(2nx)n tag1$



    $$ int_0^fracpi2 cos x cos(nx)dx=begincases fracpi4 &n=1\0 &n ,,textodd\ frac(-1)^1+n/2n^2-1 &n ,,texteven endcases tag2$$



    $$ int_0^1 fracln(1-x)a+xdx=-operatornameLi_2left(frac1a+1right)tag3$$
    Starting,
    $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=sum_n=0^inftyint_0^1int_0^1frac(x^2n-x^4n)(u^2n-u^4n)(1+x)(1+u)dxdu
    \=smallint_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)-2int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^4)+int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^4)
    \=I_22-2I_24+I_44$$




    Computing $I_22$.



    Substitute $u=fracyx$ ,change the order of integration, evaluate the inner integral, and substitue $t=frac1-x1+x$ to get
    $$beginalign I_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)=int_0^1int_0^xfracdydx(1+x)(x+y)(1-y^2)
    \=int_0^1 frac11-y^2int_1^y fracdx(1+x)(x+y) dy=int_0^1 fraclnleft(frac(1+x)^24xright)(1+x)(1-x^2),dx
    \=frac-14int_0^1 frac(1+t)t^2ln(1-t^2)dt=-frac14int_0^1fracln(1-t^2)t^2dt-frac14int_0^1fracln(1-t^2)tdt
    \=frac14sum_n=0^infty frac1(n+1)(2n+1)+frac14sum_n=0^infty frac1(n+1)(2n+2)=fracln22+fracpi^248.endalign$$




    Computing $I_44$.



    Start the same as with $I_22$ to get $displaystyle I_44=int_0^1 fraclnleft(frac(1+x)^24xright)(1-x)(1-x^4),dx=frac-18int_0^1 fracln(1-t^2)t^2(1+t^2)(1+t)^3dt$.
    We can calculate these integrals:
    $$beginalign int_0^1 fracln(1-x^2)1+x^2dx=int_0^1 fracln(1+x)1+x^2dx+int_0^1 fracln(1-x)1+x^2dx tag4
    \=int_0^1 fracln(1+x)1+x^2dx +int_0^1 fraclnleft(frac2t1+tright)1+t^2dt
    \=fracpi4ln2+sum_n=0^infty (-1)^nint_0^1ln(t) t^2ndt=fracpi4ln2-G. endalign$$
    $$beginalign int_0^1 fracln(1-x^2)x^2(1+x^2)dx=int_0^1 fracln(1-x^2)x^2dx-int_0^1 fracln(1-x^2)1+x^2dx tag5
    \=-sum_n=0^infty frac1n+1int_0^1 x^2ndx-fracpi4ln2+G=G-fracpi4ln2-2ln2.endalign$$
    $$beginalign int_0^1 fracxln(1-x^2)1+x^2dx=frac12int_0^1 fracln(1-x)1+xdx tag6
    \=-frac12 operatornameLi_2left(frac12right)=fracln^2 24-fracpi^224.endalign$$
    $$beginalign int_0^1 fracln(1-x^2)x(1+x^2)dx=int_0^1 fracln(1-x^2)xdx-int_0^1 fracxln(1-x^2)1+x^2dx tag7
    \=-sum_n=0^inftyfrac1n+1int_0^1 x^2n+1dx-fracln^2 24+fracpi^224=-fracpi^224-fracln^2 24.endalign$$
    Altogether,
    $$I_44=frac-18int_0^1 fracln(1-x^2)x^2(1+x^2)(1+3x+3x^2+x^3)dx
    \=-fracpi16ln2+fracln24+fracln^2 216+fracpi^248+fracG4.$$




    Computing $I_24$.



    Substitute $u=fracyx^2$, change the order of integration, let $yto y^2$, evaluate the inner integral,and substitue $t=frac1-x1+x$:
    $$beginalign* I_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^2)=int_0^1int_0^x^2 fracdydx(1+x)(x^2+y)(1-y^2)
    \=int_0^1 frac11-y^2int_sqrty^1fracdx(1+x)(x^2+y)dy=2int_0^1fracy1-y^4int_y^1fracdx(1+x)(x^2+y^2)dy
    \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1-x^4)dx
    =I_241-I_242. endalign*$$




    Evaulation of $I_241$.



    Substitute $t=frac1-x1+x$ to get $displaystyle I_241=frac14int_0^1 fractan^-1(t)t(1+t^2)^2(1+t)^4dt$.



    We can calculate these integrals.In the following, let $x=tantheta$:
    $$beginalign int_0^1 fractan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetacos^2(theta)dtheta=fracpi^264+fracpi16-frac18.tag8endalign$$
    $$beginalign int_0^1 fracxtan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetatanthetacos^2thetadtheta=frac12int_0^fracpi4thetasin(2theta)dtheta=frac18.tag9endalign$$
    $$beginalign int_0^1 fracx^2tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^2(theta)dtheta=fracpi^264-fracpi16+frac18.tag10endalign$$
    $$beginalign int_0^1 fracx^3tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^3(theta)sectheta,dtheta tag11
    \=int_0^fracpi4thetatantheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=fracpi8ln2-frac18+int_0^fracpi4lncostheta ,dtheta
    \=fracpi8ln2-frac18-int_0^fracpi4ln2 ,dtheta-sum_n=1^infty frac(-1)^nnint_0^fracpi4cos(2ntheta),dtheta
    \=-fracpi8ln2-frac18+frac12sum_n=1^inftyfrac(-1)^n+1n^2sin(fracpi n2)=fracG2-fracpi8ln2-frac18.endalign$$
    $$beginalign int_0^1 fractan^-1(x)x(1+x^2)^2dx=int_0^fracpi4thetacos^3(theta)csctheta,dtheta tag12
    \=int_0^fracpi4thetacottheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=-frac18-fracpi8ln2-int_0^fracpi4lnsintheta ,dtheta
    \=-frac18-fracpi8ln2+int_0^fracpi4ln2 ,dtheta+sum_n=1^inftyfrac1nint_0^fracpi4cos(2ntheta),dtheta
    \=-frac18+fracpi8ln2+frac12sum_n=1^infty fracsin(fracpi n2)n^2=fracG2+fracpi8ln2-frac18.endalign$$
    Altogether,
    $$I_241=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx= frac14int_0^1 fractan^-1(x)x(1+x^2)^2(1+4x+6x^2+4x^3+x^4)dx
    \=fracpi^232+frac18+fracG4$$




    Evaulation of $I_242$.



    Substitute $t=frac1-x1+x$ to get
    $$ I_242=frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)^2(1-t^2)(1+t)^2dt
    \=frac12int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)(1+t^2)^2(1-t^2)dt+frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)(1-t^2)dt
    \=frac12int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx-frac14int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx\+frac18int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx-frac14int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx
    $$
    Calculating these integrals:
    $$beginalign int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx=-frac12int_0^1 fraclnleft(frac1-x1+xright)sqrtx(1+x)frac1-x1+xdx tag13
    \=-frac12int_0^1fractln tsqrt1-t^2dt=-frac18int_0^1fracln tsqrt1-tdt=-frac18int_0^1 t^-1/2ln(1-t)dt
    \=frac14sum_n=0^infty frac1(n+1)(2n+3)=frac12-fracln22.endalign$$
    $$beginalign int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1+x)(1-x)x(1+x)dx tag14
    \=frac12int_0^1fracln(1+x)xdx-int_0^1fracln(1+x)1+xdx
    \=frac12sum_n=0^inftyfrac(-1)^n+1n+1int_0^1 x^n dx-frac12ln^2(1+x)bigg_0^1=fracpi^224-fracln^2 22.endalign$$
    $$beginalign int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1-x)xdx-int_0^1fracln(1-x)1+xdx tag15
    \=-fracpi^212-left(fracln^2 22-fracpi^212right)=-fracln^2 22.endalign$$
    $$
    int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx=-2int_0^fracpi4cos^2(theta)(1-tan^2theta)lncostheta,dtheta tag16
    \=-2int_0^fracpi4cos(2theta)lncostheta,dtheta=2ln2int_0^fracpi4cos(2theta)dtheta+sum_n=1^infty frac(-1)^nnint_0^fracpi2costheta cos(ntheta)dtheta
    \=ln2-fracpi4+sum_n=1^infty frac(-1)^2n2nfrac(-1)^n+1(2n)^2-1=fracln22-fracpi4+frac12.$$
    Altogether, $displaystyle I_242=fracpi^2192+fracpi16+fracln^2 216-frac3ln28+frac18$,



    leading to $displaystyle I_24=I_241-I_242=frac5pi^2192-fracpi16-fracln^2 216+frac3ln28+fracG4$,
    and finally, confirming the conjecture,
    $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=I_22-2I_24+I_44=fracpi8-fracpi16ln2-fracpi^296+frac3ln^2 216-fracG4.$$




    I don't know about higher powers. I guess the case $mathcal A_2$ can also be done. If we start the same as with $mathcal B_2$, writing $mathcal A_2=J_22-2J_24+J_44$
    we can find that $displaystyle J_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^2u^2)=2I_44-I_22=-fracpi8ln2+fracG2+fracpi^248+fracln^2 28$



    $J_44$ can be reduced to $displaystyle =-frac12int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx$.
    already this i can't evaulate fully, as polylogs are inescapable. Factorizing $x^2+6x+1=(x+3+2sqrt2)(x+3-2sqrt2).$



    I can get $displaystyle int_0^1 fracln(1-x^2)x(x^4+6x^2+1)dx=-fracpi^212+frac4-3sqrt216operatornameLi_2left(frac2-sqrt24right)+frac4+3sqrt216operatornameLi_2left(frac2+sqrt24right)$



    but nothing more.



    Edit 1.



    After some more work and a fair amount of cancellation, we obtain
    $$int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx=frac1+2sqrt24piln2-fracpi^224-frac14lnleft(frac2+sqrt24right)lnleft(frac2-sqrt24right)
    -fracsqrt2+12ImoperatornameLi_2left(frac2+sqrt22+fracisqrt22right)-fracsqrt2-12ImoperatornameLi_2left(frac2-sqrt22+fracisqrt22right)$$



    I obtained it by calculating $displaystyle int_0^1 fracln(1+x)x+adx=ln2lnleft(fraca+1a-1right)+operatornameLi_2left(frac21-aright)-operatornameLi_2left(frac11-aright)$,
    which together with $(3)$ can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x+adx$, which in turn, through partial fractions, can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x^2+a^2dx$.
    Fortunately, things didn't get too ugly as both $3+2sqrt2$ and $3-2sqrt2$ have nice square roots. I will fill in details as soon as I can.



    Now we just need to evaluate $J_24$. Starting similarly as with $I_24$,
    we have:
    $$J_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^4u^2)
    \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1+x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1+x^4)dx
    \=J_241-J_242$$



    Through $t=frac1-x1+x$, $J_241$ turns to $displaystyle int_0^1 fractan^-1(x)(1+x^2)(x^4+6x^2+1)(1+x)^4,dx$. I don't have any idea about that yet. Edit 1.






    share|cite|improve this answer











    $endgroup$

















      22





      +50







      $begingroup$

      So basically, I'll evaluate a bunch of integrals, trying to avoid polylogs as much as possible.



      First thing is to notice that $displaystyle H_n-2H_2n+H_4n=int_0^1 fracx^2n-x^4n1+xdx$.
      I noticed that $H_n-2H_2n+H_4n=H_4n-H_2n-(H_2n-H_n)=H_4n^--H_2n^-$, where $H_n^-=sum_k=1^n frac(-1)^k+1k$ is called
      a skew harmonic number (at least by Khristo N. Boyadzhiev. link.) Knowing they have a simple intergal representation I found the above. My answer is influenced by Boyadzhiev's work.
      If I make any unexplainable substitution, it's most likely $t=frac1-x1+x$.
      Also, I'm not very good with Latex, so alignment should be awful. Hopefully there are no typos.



      Below, easy enough to prove, is what I take for granted:
      $ -lnsin x=ln2+sum_n=1^infty fraccos(2nx)n ,-lncos x=ln2+sum_n=1^infty frac(-1)^ncos(2nx)n tag1$



      $$ int_0^fracpi2 cos x cos(nx)dx=begincases fracpi4 &n=1\0 &n ,,textodd\ frac(-1)^1+n/2n^2-1 &n ,,texteven endcases tag2$$



      $$ int_0^1 fracln(1-x)a+xdx=-operatornameLi_2left(frac1a+1right)tag3$$
      Starting,
      $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=sum_n=0^inftyint_0^1int_0^1frac(x^2n-x^4n)(u^2n-u^4n)(1+x)(1+u)dxdu
      \=smallint_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)-2int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^4)+int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^4)
      \=I_22-2I_24+I_44$$




      Computing $I_22$.



      Substitute $u=fracyx$ ,change the order of integration, evaluate the inner integral, and substitue $t=frac1-x1+x$ to get
      $$beginalign I_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)=int_0^1int_0^xfracdydx(1+x)(x+y)(1-y^2)
      \=int_0^1 frac11-y^2int_1^y fracdx(1+x)(x+y) dy=int_0^1 fraclnleft(frac(1+x)^24xright)(1+x)(1-x^2),dx
      \=frac-14int_0^1 frac(1+t)t^2ln(1-t^2)dt=-frac14int_0^1fracln(1-t^2)t^2dt-frac14int_0^1fracln(1-t^2)tdt
      \=frac14sum_n=0^infty frac1(n+1)(2n+1)+frac14sum_n=0^infty frac1(n+1)(2n+2)=fracln22+fracpi^248.endalign$$




      Computing $I_44$.



      Start the same as with $I_22$ to get $displaystyle I_44=int_0^1 fraclnleft(frac(1+x)^24xright)(1-x)(1-x^4),dx=frac-18int_0^1 fracln(1-t^2)t^2(1+t^2)(1+t)^3dt$.
      We can calculate these integrals:
      $$beginalign int_0^1 fracln(1-x^2)1+x^2dx=int_0^1 fracln(1+x)1+x^2dx+int_0^1 fracln(1-x)1+x^2dx tag4
      \=int_0^1 fracln(1+x)1+x^2dx +int_0^1 fraclnleft(frac2t1+tright)1+t^2dt
      \=fracpi4ln2+sum_n=0^infty (-1)^nint_0^1ln(t) t^2ndt=fracpi4ln2-G. endalign$$
      $$beginalign int_0^1 fracln(1-x^2)x^2(1+x^2)dx=int_0^1 fracln(1-x^2)x^2dx-int_0^1 fracln(1-x^2)1+x^2dx tag5
      \=-sum_n=0^infty frac1n+1int_0^1 x^2ndx-fracpi4ln2+G=G-fracpi4ln2-2ln2.endalign$$
      $$beginalign int_0^1 fracxln(1-x^2)1+x^2dx=frac12int_0^1 fracln(1-x)1+xdx tag6
      \=-frac12 operatornameLi_2left(frac12right)=fracln^2 24-fracpi^224.endalign$$
      $$beginalign int_0^1 fracln(1-x^2)x(1+x^2)dx=int_0^1 fracln(1-x^2)xdx-int_0^1 fracxln(1-x^2)1+x^2dx tag7
      \=-sum_n=0^inftyfrac1n+1int_0^1 x^2n+1dx-fracln^2 24+fracpi^224=-fracpi^224-fracln^2 24.endalign$$
      Altogether,
      $$I_44=frac-18int_0^1 fracln(1-x^2)x^2(1+x^2)(1+3x+3x^2+x^3)dx
      \=-fracpi16ln2+fracln24+fracln^2 216+fracpi^248+fracG4.$$




      Computing $I_24$.



      Substitute $u=fracyx^2$, change the order of integration, let $yto y^2$, evaluate the inner integral,and substitue $t=frac1-x1+x$:
      $$beginalign* I_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^2)=int_0^1int_0^x^2 fracdydx(1+x)(x^2+y)(1-y^2)
      \=int_0^1 frac11-y^2int_sqrty^1fracdx(1+x)(x^2+y)dy=2int_0^1fracy1-y^4int_y^1fracdx(1+x)(x^2+y^2)dy
      \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1-x^4)dx
      =I_241-I_242. endalign*$$




      Evaulation of $I_241$.



      Substitute $t=frac1-x1+x$ to get $displaystyle I_241=frac14int_0^1 fractan^-1(t)t(1+t^2)^2(1+t)^4dt$.



      We can calculate these integrals.In the following, let $x=tantheta$:
      $$beginalign int_0^1 fractan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetacos^2(theta)dtheta=fracpi^264+fracpi16-frac18.tag8endalign$$
      $$beginalign int_0^1 fracxtan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetatanthetacos^2thetadtheta=frac12int_0^fracpi4thetasin(2theta)dtheta=frac18.tag9endalign$$
      $$beginalign int_0^1 fracx^2tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^2(theta)dtheta=fracpi^264-fracpi16+frac18.tag10endalign$$
      $$beginalign int_0^1 fracx^3tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^3(theta)sectheta,dtheta tag11
      \=int_0^fracpi4thetatantheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=fracpi8ln2-frac18+int_0^fracpi4lncostheta ,dtheta
      \=fracpi8ln2-frac18-int_0^fracpi4ln2 ,dtheta-sum_n=1^infty frac(-1)^nnint_0^fracpi4cos(2ntheta),dtheta
      \=-fracpi8ln2-frac18+frac12sum_n=1^inftyfrac(-1)^n+1n^2sin(fracpi n2)=fracG2-fracpi8ln2-frac18.endalign$$
      $$beginalign int_0^1 fractan^-1(x)x(1+x^2)^2dx=int_0^fracpi4thetacos^3(theta)csctheta,dtheta tag12
      \=int_0^fracpi4thetacottheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=-frac18-fracpi8ln2-int_0^fracpi4lnsintheta ,dtheta
      \=-frac18-fracpi8ln2+int_0^fracpi4ln2 ,dtheta+sum_n=1^inftyfrac1nint_0^fracpi4cos(2ntheta),dtheta
      \=-frac18+fracpi8ln2+frac12sum_n=1^infty fracsin(fracpi n2)n^2=fracG2+fracpi8ln2-frac18.endalign$$
      Altogether,
      $$I_241=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx= frac14int_0^1 fractan^-1(x)x(1+x^2)^2(1+4x+6x^2+4x^3+x^4)dx
      \=fracpi^232+frac18+fracG4$$




      Evaulation of $I_242$.



      Substitute $t=frac1-x1+x$ to get
      $$ I_242=frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)^2(1-t^2)(1+t)^2dt
      \=frac12int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)(1+t^2)^2(1-t^2)dt+frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)(1-t^2)dt
      \=frac12int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx-frac14int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx\+frac18int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx-frac14int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx
      $$
      Calculating these integrals:
      $$beginalign int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx=-frac12int_0^1 fraclnleft(frac1-x1+xright)sqrtx(1+x)frac1-x1+xdx tag13
      \=-frac12int_0^1fractln tsqrt1-t^2dt=-frac18int_0^1fracln tsqrt1-tdt=-frac18int_0^1 t^-1/2ln(1-t)dt
      \=frac14sum_n=0^infty frac1(n+1)(2n+3)=frac12-fracln22.endalign$$
      $$beginalign int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1+x)(1-x)x(1+x)dx tag14
      \=frac12int_0^1fracln(1+x)xdx-int_0^1fracln(1+x)1+xdx
      \=frac12sum_n=0^inftyfrac(-1)^n+1n+1int_0^1 x^n dx-frac12ln^2(1+x)bigg_0^1=fracpi^224-fracln^2 22.endalign$$
      $$beginalign int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1-x)xdx-int_0^1fracln(1-x)1+xdx tag15
      \=-fracpi^212-left(fracln^2 22-fracpi^212right)=-fracln^2 22.endalign$$
      $$
      int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx=-2int_0^fracpi4cos^2(theta)(1-tan^2theta)lncostheta,dtheta tag16
      \=-2int_0^fracpi4cos(2theta)lncostheta,dtheta=2ln2int_0^fracpi4cos(2theta)dtheta+sum_n=1^infty frac(-1)^nnint_0^fracpi2costheta cos(ntheta)dtheta
      \=ln2-fracpi4+sum_n=1^infty frac(-1)^2n2nfrac(-1)^n+1(2n)^2-1=fracln22-fracpi4+frac12.$$
      Altogether, $displaystyle I_242=fracpi^2192+fracpi16+fracln^2 216-frac3ln28+frac18$,



      leading to $displaystyle I_24=I_241-I_242=frac5pi^2192-fracpi16-fracln^2 216+frac3ln28+fracG4$,
      and finally, confirming the conjecture,
      $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=I_22-2I_24+I_44=fracpi8-fracpi16ln2-fracpi^296+frac3ln^2 216-fracG4.$$




      I don't know about higher powers. I guess the case $mathcal A_2$ can also be done. If we start the same as with $mathcal B_2$, writing $mathcal A_2=J_22-2J_24+J_44$
      we can find that $displaystyle J_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^2u^2)=2I_44-I_22=-fracpi8ln2+fracG2+fracpi^248+fracln^2 28$



      $J_44$ can be reduced to $displaystyle =-frac12int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx$.
      already this i can't evaulate fully, as polylogs are inescapable. Factorizing $x^2+6x+1=(x+3+2sqrt2)(x+3-2sqrt2).$



      I can get $displaystyle int_0^1 fracln(1-x^2)x(x^4+6x^2+1)dx=-fracpi^212+frac4-3sqrt216operatornameLi_2left(frac2-sqrt24right)+frac4+3sqrt216operatornameLi_2left(frac2+sqrt24right)$



      but nothing more.



      Edit 1.



      After some more work and a fair amount of cancellation, we obtain
      $$int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx=frac1+2sqrt24piln2-fracpi^224-frac14lnleft(frac2+sqrt24right)lnleft(frac2-sqrt24right)
      -fracsqrt2+12ImoperatornameLi_2left(frac2+sqrt22+fracisqrt22right)-fracsqrt2-12ImoperatornameLi_2left(frac2-sqrt22+fracisqrt22right)$$



      I obtained it by calculating $displaystyle int_0^1 fracln(1+x)x+adx=ln2lnleft(fraca+1a-1right)+operatornameLi_2left(frac21-aright)-operatornameLi_2left(frac11-aright)$,
      which together with $(3)$ can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x+adx$, which in turn, through partial fractions, can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x^2+a^2dx$.
      Fortunately, things didn't get too ugly as both $3+2sqrt2$ and $3-2sqrt2$ have nice square roots. I will fill in details as soon as I can.



      Now we just need to evaluate $J_24$. Starting similarly as with $I_24$,
      we have:
      $$J_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^4u^2)
      \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1+x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1+x^4)dx
      \=J_241-J_242$$



      Through $t=frac1-x1+x$, $J_241$ turns to $displaystyle int_0^1 fractan^-1(x)(1+x^2)(x^4+6x^2+1)(1+x)^4,dx$. I don't have any idea about that yet. Edit 1.






      share|cite|improve this answer











      $endgroup$















        22





        +50







        22





        +50



        22




        +50



        $begingroup$

        So basically, I'll evaluate a bunch of integrals, trying to avoid polylogs as much as possible.



        First thing is to notice that $displaystyle H_n-2H_2n+H_4n=int_0^1 fracx^2n-x^4n1+xdx$.
        I noticed that $H_n-2H_2n+H_4n=H_4n-H_2n-(H_2n-H_n)=H_4n^--H_2n^-$, where $H_n^-=sum_k=1^n frac(-1)^k+1k$ is called
        a skew harmonic number (at least by Khristo N. Boyadzhiev. link.) Knowing they have a simple intergal representation I found the above. My answer is influenced by Boyadzhiev's work.
        If I make any unexplainable substitution, it's most likely $t=frac1-x1+x$.
        Also, I'm not very good with Latex, so alignment should be awful. Hopefully there are no typos.



        Below, easy enough to prove, is what I take for granted:
        $ -lnsin x=ln2+sum_n=1^infty fraccos(2nx)n ,-lncos x=ln2+sum_n=1^infty frac(-1)^ncos(2nx)n tag1$



        $$ int_0^fracpi2 cos x cos(nx)dx=begincases fracpi4 &n=1\0 &n ,,textodd\ frac(-1)^1+n/2n^2-1 &n ,,texteven endcases tag2$$



        $$ int_0^1 fracln(1-x)a+xdx=-operatornameLi_2left(frac1a+1right)tag3$$
        Starting,
        $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=sum_n=0^inftyint_0^1int_0^1frac(x^2n-x^4n)(u^2n-u^4n)(1+x)(1+u)dxdu
        \=smallint_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)-2int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^4)+int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^4)
        \=I_22-2I_24+I_44$$




        Computing $I_22$.



        Substitute $u=fracyx$ ,change the order of integration, evaluate the inner integral, and substitue $t=frac1-x1+x$ to get
        $$beginalign I_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)=int_0^1int_0^xfracdydx(1+x)(x+y)(1-y^2)
        \=int_0^1 frac11-y^2int_1^y fracdx(1+x)(x+y) dy=int_0^1 fraclnleft(frac(1+x)^24xright)(1+x)(1-x^2),dx
        \=frac-14int_0^1 frac(1+t)t^2ln(1-t^2)dt=-frac14int_0^1fracln(1-t^2)t^2dt-frac14int_0^1fracln(1-t^2)tdt
        \=frac14sum_n=0^infty frac1(n+1)(2n+1)+frac14sum_n=0^infty frac1(n+1)(2n+2)=fracln22+fracpi^248.endalign$$




        Computing $I_44$.



        Start the same as with $I_22$ to get $displaystyle I_44=int_0^1 fraclnleft(frac(1+x)^24xright)(1-x)(1-x^4),dx=frac-18int_0^1 fracln(1-t^2)t^2(1+t^2)(1+t)^3dt$.
        We can calculate these integrals:
        $$beginalign int_0^1 fracln(1-x^2)1+x^2dx=int_0^1 fracln(1+x)1+x^2dx+int_0^1 fracln(1-x)1+x^2dx tag4
        \=int_0^1 fracln(1+x)1+x^2dx +int_0^1 fraclnleft(frac2t1+tright)1+t^2dt
        \=fracpi4ln2+sum_n=0^infty (-1)^nint_0^1ln(t) t^2ndt=fracpi4ln2-G. endalign$$
        $$beginalign int_0^1 fracln(1-x^2)x^2(1+x^2)dx=int_0^1 fracln(1-x^2)x^2dx-int_0^1 fracln(1-x^2)1+x^2dx tag5
        \=-sum_n=0^infty frac1n+1int_0^1 x^2ndx-fracpi4ln2+G=G-fracpi4ln2-2ln2.endalign$$
        $$beginalign int_0^1 fracxln(1-x^2)1+x^2dx=frac12int_0^1 fracln(1-x)1+xdx tag6
        \=-frac12 operatornameLi_2left(frac12right)=fracln^2 24-fracpi^224.endalign$$
        $$beginalign int_0^1 fracln(1-x^2)x(1+x^2)dx=int_0^1 fracln(1-x^2)xdx-int_0^1 fracxln(1-x^2)1+x^2dx tag7
        \=-sum_n=0^inftyfrac1n+1int_0^1 x^2n+1dx-fracln^2 24+fracpi^224=-fracpi^224-fracln^2 24.endalign$$
        Altogether,
        $$I_44=frac-18int_0^1 fracln(1-x^2)x^2(1+x^2)(1+3x+3x^2+x^3)dx
        \=-fracpi16ln2+fracln24+fracln^2 216+fracpi^248+fracG4.$$




        Computing $I_24$.



        Substitute $u=fracyx^2$, change the order of integration, let $yto y^2$, evaluate the inner integral,and substitue $t=frac1-x1+x$:
        $$beginalign* I_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^2)=int_0^1int_0^x^2 fracdydx(1+x)(x^2+y)(1-y^2)
        \=int_0^1 frac11-y^2int_sqrty^1fracdx(1+x)(x^2+y)dy=2int_0^1fracy1-y^4int_y^1fracdx(1+x)(x^2+y^2)dy
        \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1-x^4)dx
        =I_241-I_242. endalign*$$




        Evaulation of $I_241$.



        Substitute $t=frac1-x1+x$ to get $displaystyle I_241=frac14int_0^1 fractan^-1(t)t(1+t^2)^2(1+t)^4dt$.



        We can calculate these integrals.In the following, let $x=tantheta$:
        $$beginalign int_0^1 fractan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetacos^2(theta)dtheta=fracpi^264+fracpi16-frac18.tag8endalign$$
        $$beginalign int_0^1 fracxtan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetatanthetacos^2thetadtheta=frac12int_0^fracpi4thetasin(2theta)dtheta=frac18.tag9endalign$$
        $$beginalign int_0^1 fracx^2tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^2(theta)dtheta=fracpi^264-fracpi16+frac18.tag10endalign$$
        $$beginalign int_0^1 fracx^3tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^3(theta)sectheta,dtheta tag11
        \=int_0^fracpi4thetatantheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=fracpi8ln2-frac18+int_0^fracpi4lncostheta ,dtheta
        \=fracpi8ln2-frac18-int_0^fracpi4ln2 ,dtheta-sum_n=1^infty frac(-1)^nnint_0^fracpi4cos(2ntheta),dtheta
        \=-fracpi8ln2-frac18+frac12sum_n=1^inftyfrac(-1)^n+1n^2sin(fracpi n2)=fracG2-fracpi8ln2-frac18.endalign$$
        $$beginalign int_0^1 fractan^-1(x)x(1+x^2)^2dx=int_0^fracpi4thetacos^3(theta)csctheta,dtheta tag12
        \=int_0^fracpi4thetacottheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=-frac18-fracpi8ln2-int_0^fracpi4lnsintheta ,dtheta
        \=-frac18-fracpi8ln2+int_0^fracpi4ln2 ,dtheta+sum_n=1^inftyfrac1nint_0^fracpi4cos(2ntheta),dtheta
        \=-frac18+fracpi8ln2+frac12sum_n=1^infty fracsin(fracpi n2)n^2=fracG2+fracpi8ln2-frac18.endalign$$
        Altogether,
        $$I_241=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx= frac14int_0^1 fractan^-1(x)x(1+x^2)^2(1+4x+6x^2+4x^3+x^4)dx
        \=fracpi^232+frac18+fracG4$$




        Evaulation of $I_242$.



        Substitute $t=frac1-x1+x$ to get
        $$ I_242=frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)^2(1-t^2)(1+t)^2dt
        \=frac12int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)(1+t^2)^2(1-t^2)dt+frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)(1-t^2)dt
        \=frac12int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx-frac14int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx\+frac18int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx-frac14int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx
        $$
        Calculating these integrals:
        $$beginalign int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx=-frac12int_0^1 fraclnleft(frac1-x1+xright)sqrtx(1+x)frac1-x1+xdx tag13
        \=-frac12int_0^1fractln tsqrt1-t^2dt=-frac18int_0^1fracln tsqrt1-tdt=-frac18int_0^1 t^-1/2ln(1-t)dt
        \=frac14sum_n=0^infty frac1(n+1)(2n+3)=frac12-fracln22.endalign$$
        $$beginalign int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1+x)(1-x)x(1+x)dx tag14
        \=frac12int_0^1fracln(1+x)xdx-int_0^1fracln(1+x)1+xdx
        \=frac12sum_n=0^inftyfrac(-1)^n+1n+1int_0^1 x^n dx-frac12ln^2(1+x)bigg_0^1=fracpi^224-fracln^2 22.endalign$$
        $$beginalign int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1-x)xdx-int_0^1fracln(1-x)1+xdx tag15
        \=-fracpi^212-left(fracln^2 22-fracpi^212right)=-fracln^2 22.endalign$$
        $$
        int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx=-2int_0^fracpi4cos^2(theta)(1-tan^2theta)lncostheta,dtheta tag16
        \=-2int_0^fracpi4cos(2theta)lncostheta,dtheta=2ln2int_0^fracpi4cos(2theta)dtheta+sum_n=1^infty frac(-1)^nnint_0^fracpi2costheta cos(ntheta)dtheta
        \=ln2-fracpi4+sum_n=1^infty frac(-1)^2n2nfrac(-1)^n+1(2n)^2-1=fracln22-fracpi4+frac12.$$
        Altogether, $displaystyle I_242=fracpi^2192+fracpi16+fracln^2 216-frac3ln28+frac18$,



        leading to $displaystyle I_24=I_241-I_242=frac5pi^2192-fracpi16-fracln^2 216+frac3ln28+fracG4$,
        and finally, confirming the conjecture,
        $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=I_22-2I_24+I_44=fracpi8-fracpi16ln2-fracpi^296+frac3ln^2 216-fracG4.$$




        I don't know about higher powers. I guess the case $mathcal A_2$ can also be done. If we start the same as with $mathcal B_2$, writing $mathcal A_2=J_22-2J_24+J_44$
        we can find that $displaystyle J_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^2u^2)=2I_44-I_22=-fracpi8ln2+fracG2+fracpi^248+fracln^2 28$



        $J_44$ can be reduced to $displaystyle =-frac12int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx$.
        already this i can't evaulate fully, as polylogs are inescapable. Factorizing $x^2+6x+1=(x+3+2sqrt2)(x+3-2sqrt2).$



        I can get $displaystyle int_0^1 fracln(1-x^2)x(x^4+6x^2+1)dx=-fracpi^212+frac4-3sqrt216operatornameLi_2left(frac2-sqrt24right)+frac4+3sqrt216operatornameLi_2left(frac2+sqrt24right)$



        but nothing more.



        Edit 1.



        After some more work and a fair amount of cancellation, we obtain
        $$int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx=frac1+2sqrt24piln2-fracpi^224-frac14lnleft(frac2+sqrt24right)lnleft(frac2-sqrt24right)
        -fracsqrt2+12ImoperatornameLi_2left(frac2+sqrt22+fracisqrt22right)-fracsqrt2-12ImoperatornameLi_2left(frac2-sqrt22+fracisqrt22right)$$



        I obtained it by calculating $displaystyle int_0^1 fracln(1+x)x+adx=ln2lnleft(fraca+1a-1right)+operatornameLi_2left(frac21-aright)-operatornameLi_2left(frac11-aright)$,
        which together with $(3)$ can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x+adx$, which in turn, through partial fractions, can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x^2+a^2dx$.
        Fortunately, things didn't get too ugly as both $3+2sqrt2$ and $3-2sqrt2$ have nice square roots. I will fill in details as soon as I can.



        Now we just need to evaluate $J_24$. Starting similarly as with $I_24$,
        we have:
        $$J_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^4u^2)
        \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1+x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1+x^4)dx
        \=J_241-J_242$$



        Through $t=frac1-x1+x$, $J_241$ turns to $displaystyle int_0^1 fractan^-1(x)(1+x^2)(x^4+6x^2+1)(1+x)^4,dx$. I don't have any idea about that yet. Edit 1.






        share|cite|improve this answer











        $endgroup$



        So basically, I'll evaluate a bunch of integrals, trying to avoid polylogs as much as possible.



        First thing is to notice that $displaystyle H_n-2H_2n+H_4n=int_0^1 fracx^2n-x^4n1+xdx$.
        I noticed that $H_n-2H_2n+H_4n=H_4n-H_2n-(H_2n-H_n)=H_4n^--H_2n^-$, where $H_n^-=sum_k=1^n frac(-1)^k+1k$ is called
        a skew harmonic number (at least by Khristo N. Boyadzhiev. link.) Knowing they have a simple intergal representation I found the above. My answer is influenced by Boyadzhiev's work.
        If I make any unexplainable substitution, it's most likely $t=frac1-x1+x$.
        Also, I'm not very good with Latex, so alignment should be awful. Hopefully there are no typos.



        Below, easy enough to prove, is what I take for granted:
        $ -lnsin x=ln2+sum_n=1^infty fraccos(2nx)n ,-lncos x=ln2+sum_n=1^infty frac(-1)^ncos(2nx)n tag1$



        $$ int_0^fracpi2 cos x cos(nx)dx=begincases fracpi4 &n=1\0 &n ,,textodd\ frac(-1)^1+n/2n^2-1 &n ,,texteven endcases tag2$$



        $$ int_0^1 fracln(1-x)a+xdx=-operatornameLi_2left(frac1a+1right)tag3$$
        Starting,
        $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=sum_n=0^inftyint_0^1int_0^1frac(x^2n-x^4n)(u^2n-u^4n)(1+x)(1+u)dxdu
        \=smallint_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)-2int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^4)+int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^4)
        \=I_22-2I_24+I_44$$




        Computing $I_22$.



        Substitute $u=fracyx$ ,change the order of integration, evaluate the inner integral, and substitue $t=frac1-x1+x$ to get
        $$beginalign I_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^2u^2)=int_0^1int_0^xfracdydx(1+x)(x+y)(1-y^2)
        \=int_0^1 frac11-y^2int_1^y fracdx(1+x)(x+y) dy=int_0^1 fraclnleft(frac(1+x)^24xright)(1+x)(1-x^2),dx
        \=frac-14int_0^1 frac(1+t)t^2ln(1-t^2)dt=-frac14int_0^1fracln(1-t^2)t^2dt-frac14int_0^1fracln(1-t^2)tdt
        \=frac14sum_n=0^infty frac1(n+1)(2n+1)+frac14sum_n=0^infty frac1(n+1)(2n+2)=fracln22+fracpi^248.endalign$$




        Computing $I_44$.



        Start the same as with $I_22$ to get $displaystyle I_44=int_0^1 fraclnleft(frac(1+x)^24xright)(1-x)(1-x^4),dx=frac-18int_0^1 fracln(1-t^2)t^2(1+t^2)(1+t)^3dt$.
        We can calculate these integrals:
        $$beginalign int_0^1 fracln(1-x^2)1+x^2dx=int_0^1 fracln(1+x)1+x^2dx+int_0^1 fracln(1-x)1+x^2dx tag4
        \=int_0^1 fracln(1+x)1+x^2dx +int_0^1 fraclnleft(frac2t1+tright)1+t^2dt
        \=fracpi4ln2+sum_n=0^infty (-1)^nint_0^1ln(t) t^2ndt=fracpi4ln2-G. endalign$$
        $$beginalign int_0^1 fracln(1-x^2)x^2(1+x^2)dx=int_0^1 fracln(1-x^2)x^2dx-int_0^1 fracln(1-x^2)1+x^2dx tag5
        \=-sum_n=0^infty frac1n+1int_0^1 x^2ndx-fracpi4ln2+G=G-fracpi4ln2-2ln2.endalign$$
        $$beginalign int_0^1 fracxln(1-x^2)1+x^2dx=frac12int_0^1 fracln(1-x)1+xdx tag6
        \=-frac12 operatornameLi_2left(frac12right)=fracln^2 24-fracpi^224.endalign$$
        $$beginalign int_0^1 fracln(1-x^2)x(1+x^2)dx=int_0^1 fracln(1-x^2)xdx-int_0^1 fracxln(1-x^2)1+x^2dx tag7
        \=-sum_n=0^inftyfrac1n+1int_0^1 x^2n+1dx-fracln^2 24+fracpi^224=-fracpi^224-fracln^2 24.endalign$$
        Altogether,
        $$I_44=frac-18int_0^1 fracln(1-x^2)x^2(1+x^2)(1+3x+3x^2+x^3)dx
        \=-fracpi16ln2+fracln24+fracln^2 216+fracpi^248+fracG4.$$




        Computing $I_24$.



        Substitute $u=fracyx^2$, change the order of integration, let $yto y^2$, evaluate the inner integral,and substitue $t=frac1-x1+x$:
        $$beginalign* I_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1-x^4u^2)=int_0^1int_0^x^2 fracdydx(1+x)(x^2+y)(1-y^2)
        \=int_0^1 frac11-y^2int_sqrty^1fracdx(1+x)(x^2+y)dy=2int_0^1fracy1-y^4int_y^1fracdx(1+x)(x^2+y^2)dy
        \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1-x^4)dx
        =I_241-I_242. endalign*$$




        Evaulation of $I_241$.



        Substitute $t=frac1-x1+x$ to get $displaystyle I_241=frac14int_0^1 fractan^-1(t)t(1+t^2)^2(1+t)^4dt$.



        We can calculate these integrals.In the following, let $x=tantheta$:
        $$beginalign int_0^1 fractan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetacos^2(theta)dtheta=fracpi^264+fracpi16-frac18.tag8endalign$$
        $$beginalign int_0^1 fracxtan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetatanthetacos^2thetadtheta=frac12int_0^fracpi4thetasin(2theta)dtheta=frac18.tag9endalign$$
        $$beginalign int_0^1 fracx^2tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^2(theta)dtheta=fracpi^264-fracpi16+frac18.tag10endalign$$
        $$beginalign int_0^1 fracx^3tan^-1(x)(1+x^2)^2dx=int_0^fracpi4thetasin^3(theta)sectheta,dtheta tag11
        \=int_0^fracpi4thetatantheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=fracpi8ln2-frac18+int_0^fracpi4lncostheta ,dtheta
        \=fracpi8ln2-frac18-int_0^fracpi4ln2 ,dtheta-sum_n=1^infty frac(-1)^nnint_0^fracpi4cos(2ntheta),dtheta
        \=-fracpi8ln2-frac18+frac12sum_n=1^inftyfrac(-1)^n+1n^2sin(fracpi n2)=fracG2-fracpi8ln2-frac18.endalign$$
        $$beginalign int_0^1 fractan^-1(x)x(1+x^2)^2dx=int_0^fracpi4thetacos^3(theta)csctheta,dtheta tag12
        \=int_0^fracpi4thetacottheta ,dtheta-int_0^fracpi4thetasinthetacostheta ,dtheta=-frac18-fracpi8ln2-int_0^fracpi4lnsintheta ,dtheta
        \=-frac18-fracpi8ln2+int_0^fracpi4ln2 ,dtheta+sum_n=1^inftyfrac1nint_0^fracpi4cos(2ntheta),dtheta
        \=-frac18+fracpi8ln2+frac12sum_n=1^infty fracsin(fracpi n2)n^2=fracG2+fracpi8ln2-frac18.endalign$$
        Altogether,
        $$I_241=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1-x^4)dx= frac14int_0^1 fractan^-1(x)x(1+x^2)^2(1+4x+6x^2+4x^3+x^4)dx
        \=fracpi^232+frac18+fracG4$$




        Evaulation of $I_242$.



        Substitute $t=frac1-x1+x$ to get
        $$ I_242=frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)^2(1-t^2)(1+t)^2dt
        \=frac12int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)(1+t^2)^2(1-t^2)dt+frac14int_0^1 fraclnleft(fracsqrt1+t^21-t^2right)t(1+t^2)(1-t^2)dt
        \=frac12int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx-frac14int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx\+frac18int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx-frac14int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx
        $$
        Calculating these integrals:
        $$beginalign int_0^1 fraclnleft(frac1+x^21-x^2right)(1+x^2)^2(1-x^2)dx=-frac12int_0^1 fraclnleft(frac1-x1+xright)sqrtx(1+x)frac1-x1+xdx tag13
        \=-frac12int_0^1fractln tsqrt1-t^2dt=-frac18int_0^1fracln tsqrt1-tdt=-frac18int_0^1 t^-1/2ln(1-t)dt
        \=frac14sum_n=0^infty frac1(n+1)(2n+3)=frac12-fracln22.endalign$$
        $$beginalign int_0^1fracln(1+x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1+x)(1-x)x(1+x)dx tag14
        \=frac12int_0^1fracln(1+x)xdx-int_0^1fracln(1+x)1+xdx
        \=frac12sum_n=0^inftyfrac(-1)^n+1n+1int_0^1 x^n dx-frac12ln^2(1+x)bigg_0^1=fracpi^224-fracln^2 22.endalign$$
        $$beginalign int_0^1fracln(1-x^2)(1-x^2)x(1+x^2)dx=frac12int_0^1fracln(1-x)xdx-int_0^1fracln(1-x)1+xdx tag15
        \=-fracpi^212-left(fracln^2 22-fracpi^212right)=-fracln^2 22.endalign$$
        $$
        int_0^1fracln(1+x^2)(1+x^2)^2(1-x^2)dx=-2int_0^fracpi4cos^2(theta)(1-tan^2theta)lncostheta,dtheta tag16
        \=-2int_0^fracpi4cos(2theta)lncostheta,dtheta=2ln2int_0^fracpi4cos(2theta)dtheta+sum_n=1^infty frac(-1)^nnint_0^fracpi2costheta cos(ntheta)dtheta
        \=ln2-fracpi4+sum_n=1^infty frac(-1)^2n2nfrac(-1)^n+1(2n)^2-1=fracln22-fracpi4+frac12.$$
        Altogether, $displaystyle I_242=fracpi^2192+fracpi16+fracln^2 216-frac3ln28+frac18$,



        leading to $displaystyle I_24=I_241-I_242=frac5pi^2192-fracpi16-fracln^2 216+frac3ln28+fracG4$,
        and finally, confirming the conjecture,
        $$sum_n=0^infty(H_n-2H_2n+H_4n)^2=I_22-2I_24+I_44=fracpi8-fracpi16ln2-fracpi^296+frac3ln^2 216-fracG4.$$




        I don't know about higher powers. I guess the case $mathcal A_2$ can also be done. If we start the same as with $mathcal B_2$, writing $mathcal A_2=J_22-2J_24+J_44$
        we can find that $displaystyle J_22=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^2u^2)=2I_44-I_22=-fracpi8ln2+fracG2+fracpi^248+fracln^2 28$



        $J_44$ can be reduced to $displaystyle =-frac12int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx$.
        already this i can't evaulate fully, as polylogs are inescapable. Factorizing $x^2+6x+1=(x+3+2sqrt2)(x+3-2sqrt2).$



        I can get $displaystyle int_0^1 fracln(1-x^2)x(x^4+6x^2+1)dx=-fracpi^212+frac4-3sqrt216operatornameLi_2left(frac2-sqrt24right)+frac4+3sqrt216operatornameLi_2left(frac2+sqrt24right)$



        but nothing more.



        Edit 1.



        After some more work and a fair amount of cancellation, we obtain
        $$int_0^1 fracln(1-x^2)x(x^4+6x^2+1)(1+x)^3 dx=frac1+2sqrt24piln2-fracpi^224-frac14lnleft(frac2+sqrt24right)lnleft(frac2-sqrt24right)
        -fracsqrt2+12ImoperatornameLi_2left(frac2+sqrt22+fracisqrt22right)-fracsqrt2-12ImoperatornameLi_2left(frac2-sqrt22+fracisqrt22right)$$



        I obtained it by calculating $displaystyle int_0^1 fracln(1+x)x+adx=ln2lnleft(fraca+1a-1right)+operatornameLi_2left(frac21-aright)-operatornameLi_2left(frac11-aright)$,
        which together with $(3)$ can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x+adx$, which in turn, through partial fractions, can be used to give a closed form for $displaystyle int_0^1fracln(1-x^2)x^2+a^2dx$.
        Fortunately, things didn't get too ugly as both $3+2sqrt2$ and $3-2sqrt2$ have nice square roots. I will fill in details as soon as I can.



        Now we just need to evaluate $J_24$. Starting similarly as with $I_24$,
        we have:
        $$J_24=int_0^1int_0^1fracdxdu(1+x)(1+u)(1+x^4u^2)
        \=2int_0^1fractan^-1left(frac1-x1+xright)(1+x^2)(1+x^4)dx-2int_0^1fracxlnleft(frac(1+x)sqrt1+x^22sqrt2xright)(1+x^2)(1+x^4)dx
        \=J_241-J_242$$



        Through $t=frac1-x1+x$, $J_241$ turns to $displaystyle int_0^1 fractan^-1(x)(1+x^2)(x^4+6x^2+1)(1+x)^4,dx$. I don't have any idea about that yet. Edit 1.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Sep 15 '15 at 15:09

























        answered Sep 14 '15 at 15:51









        nospoonnospoon

        4,6361532




        4,6361532





















            8





            +50







            $begingroup$

            Just my thoughts for now: I would try to exploit Parseval's identity. For first, we have:
            $$ H_n-2H_2n+H_4n =int_0^1frac-x^n+2x^2n-x^4n1-x,dx tag1 $$
            and:
            $$ sum_ngeq 1frac-x^n+2x^2n-x^4n1-xe^niy = frac11-xleft(frac-11-e^iyx+frac21-e^iyx^2+frac-11-e^iyx^4right).tag2$$
            The poles of the RHS (as a function of $x$) are located at $xinlefte^-iy,pm e^-iy/2,pm e^-iy/4,pm i e^-iy/4right$.



            By using the residue theorem we may compute an explicit representation for:
            $$ g(y) = sum_ngeq 1left(H_n-2H_2n+H_4nright)e^niy,tag3 $$
            then Parseval's theorem gives:
            $$ sum_ngeq 1left(H_n-2H_2n+H_4nright)^2 = frac12piint_-pi^pig(y)g(-y),dy tag4$$
            and the resulting integral should be not to difficult to evaluate in terms of dilogarithms.



            Another chance may be to apply summation by parts (like I did in this question), but it looks lengthy.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
              $endgroup$
              – Winther
              Sep 1 '15 at 15:26










            • $begingroup$
              @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
              $endgroup$
              – Jack D'Aurizio
              Sep 1 '15 at 15:35















            8





            +50







            $begingroup$

            Just my thoughts for now: I would try to exploit Parseval's identity. For first, we have:
            $$ H_n-2H_2n+H_4n =int_0^1frac-x^n+2x^2n-x^4n1-x,dx tag1 $$
            and:
            $$ sum_ngeq 1frac-x^n+2x^2n-x^4n1-xe^niy = frac11-xleft(frac-11-e^iyx+frac21-e^iyx^2+frac-11-e^iyx^4right).tag2$$
            The poles of the RHS (as a function of $x$) are located at $xinlefte^-iy,pm e^-iy/2,pm e^-iy/4,pm i e^-iy/4right$.



            By using the residue theorem we may compute an explicit representation for:
            $$ g(y) = sum_ngeq 1left(H_n-2H_2n+H_4nright)e^niy,tag3 $$
            then Parseval's theorem gives:
            $$ sum_ngeq 1left(H_n-2H_2n+H_4nright)^2 = frac12piint_-pi^pig(y)g(-y),dy tag4$$
            and the resulting integral should be not to difficult to evaluate in terms of dilogarithms.



            Another chance may be to apply summation by parts (like I did in this question), but it looks lengthy.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
              $endgroup$
              – Winther
              Sep 1 '15 at 15:26










            • $begingroup$
              @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
              $endgroup$
              – Jack D'Aurizio
              Sep 1 '15 at 15:35













            8





            +50







            8





            +50



            8




            +50



            $begingroup$

            Just my thoughts for now: I would try to exploit Parseval's identity. For first, we have:
            $$ H_n-2H_2n+H_4n =int_0^1frac-x^n+2x^2n-x^4n1-x,dx tag1 $$
            and:
            $$ sum_ngeq 1frac-x^n+2x^2n-x^4n1-xe^niy = frac11-xleft(frac-11-e^iyx+frac21-e^iyx^2+frac-11-e^iyx^4right).tag2$$
            The poles of the RHS (as a function of $x$) are located at $xinlefte^-iy,pm e^-iy/2,pm e^-iy/4,pm i e^-iy/4right$.



            By using the residue theorem we may compute an explicit representation for:
            $$ g(y) = sum_ngeq 1left(H_n-2H_2n+H_4nright)e^niy,tag3 $$
            then Parseval's theorem gives:
            $$ sum_ngeq 1left(H_n-2H_2n+H_4nright)^2 = frac12piint_-pi^pig(y)g(-y),dy tag4$$
            and the resulting integral should be not to difficult to evaluate in terms of dilogarithms.



            Another chance may be to apply summation by parts (like I did in this question), but it looks lengthy.






            share|cite|improve this answer











            $endgroup$



            Just my thoughts for now: I would try to exploit Parseval's identity. For first, we have:
            $$ H_n-2H_2n+H_4n =int_0^1frac-x^n+2x^2n-x^4n1-x,dx tag1 $$
            and:
            $$ sum_ngeq 1frac-x^n+2x^2n-x^4n1-xe^niy = frac11-xleft(frac-11-e^iyx+frac21-e^iyx^2+frac-11-e^iyx^4right).tag2$$
            The poles of the RHS (as a function of $x$) are located at $xinlefte^-iy,pm e^-iy/2,pm e^-iy/4,pm i e^-iy/4right$.



            By using the residue theorem we may compute an explicit representation for:
            $$ g(y) = sum_ngeq 1left(H_n-2H_2n+H_4nright)e^niy,tag3 $$
            then Parseval's theorem gives:
            $$ sum_ngeq 1left(H_n-2H_2n+H_4nright)^2 = frac12piint_-pi^pig(y)g(-y),dy tag4$$
            and the resulting integral should be not to difficult to evaluate in terms of dilogarithms.



            Another chance may be to apply summation by parts (like I did in this question), but it looks lengthy.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 13 '17 at 12:21









            Community

            1




            1










            answered Aug 30 '15 at 17:36









            Jack D'AurizioJack D'Aurizio

            291k33284667




            291k33284667











            • $begingroup$
              It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
              $endgroup$
              – Winther
              Sep 1 '15 at 15:26










            • $begingroup$
              @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
              $endgroup$
              – Jack D'Aurizio
              Sep 1 '15 at 15:35
















            • $begingroup$
              It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
              $endgroup$
              – Winther
              Sep 1 '15 at 15:26










            • $begingroup$
              @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
              $endgroup$
              – Jack D'Aurizio
              Sep 1 '15 at 15:35















            $begingroup$
            It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
            $endgroup$
            – Winther
            Sep 1 '15 at 15:26




            $begingroup$
            It’s a very nice idea, but I think you are underestimating the difficulty of evaluating the integral. I checked the representation for $g$ using software: the result is a ton of terms of rational functions of trig’s and inverse trig’s and that is before computing $g(y)g(-y)$. This approach might work, but it looks like a lot of work.
            $endgroup$
            – Winther
            Sep 1 '15 at 15:26












            $begingroup$
            @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
            $endgroup$
            – Jack D'Aurizio
            Sep 1 '15 at 15:35




            $begingroup$
            @Winther: I know, it is a tough nut to crack with bare hands, but with some human-guided simplifications, it just boils down to computing some dilogarithmic integrals related with the fourth roots of unity. I haven't really delved into summation by parts, yet. It looks promising, maybe it is the simple way.
            $endgroup$
            – Jack D'Aurizio
            Sep 1 '15 at 15:35

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1406122%2fconjectured-value-of-a-harmonic-sum-sum-n-1-infty-lefth-n-2h-2nh-4n%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye