If $2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$, prove than $int_0^1(f(x))^2dxgeqfrac43$Prove that $int_0^1|f(x)f'(x)|dxleqfrac12int_0^1|f'(x)|^2dx$Integral inequality $int_0^1h(x)^2dxint_0^1x^2h(x)^2dxge cleft(int_0^1h(x)dxright)^4$Prove that $int_0^1f(x)^2dxgeq 4$$int_0^1f(x)cdot g(x)dx=int_0^1f(x)dxcdot int_0^1g(x)dx$Prove that:$f(f(x)) = x^2 implies int_0^1(f(x))^2dx geq frac313$how can we explain that $int_0^L1 + frac12(u'(x))^2dx - L = int_0^Lfrac12(u'(x))^2dx$?For a continuous function with $int_0^1 f(x)dx=1$, and $M=maxf(x)$, show that $1-frac12Mgeqint_0^1xf(x)dxgeqfrac12M$Let $f:mathbbRrightarrowmathbbR$ be a continuous function such that $int_x^1f(t)dtgeq(1-x)^2$. Prove that $f(1)=0$Prove that $int_0^1f(x)arctan x dx=fracπ8int_0^1f(x)dx$Prove that $f(x)=0$ for any $xin[0,1]$.
What is the likely impact of grounding an entire aircraft series?
Force user to remove USB token
Placing subfig vertically
How are such low op-amp input currents possible?
Replacing Windows 7 security updates with anti-virus?
Why is this plane circling around the Lucknow airport every day?
Why doesn't this Google Translate ad use the word "Translation" instead of "Translate"?
"One can do his homework in the library"
What to do when during a meeting client people start to fight (even physically) with each others?
What is the chance of making a successful appeal to dismissal decision from a PhD program after failing the qualifying exam in the 2nd attempt?
Why is there a voltage between the mains ground and my radiator?
In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?
Making a sword in the stone, in a medieval world without magic
Finding algorithms of QGIS commands?
Good for you! in Russian
How do I deal with a powergamer in a game full of beginners in a school club?
PTIJ: Why can't I eat anything?
Algorithm to convert a fixed-length string to the smallest possible collision-free representation?
Why would a jet engine that runs at temps excess of 2000°C burn when it crashes?
How much attack damage does the AC boost from a shield prevent on average?
What are the pros and cons of practising figure-eight landings on perpendicular runways?
Should I tell my boss the work he did was worthless
Virginia employer terminated employee and wants signing bonus returned
Are babies of evil humanoid species inherently evil?
If $2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$, prove than $int_0^1(f(x))^2dxgeqfrac43$
Prove that $int_0^1|f(x)f'(x)|dxleqfrac12int_0^1|f'(x)|^2dx$Integral inequality $int_0^1h(x)^2dxint_0^1x^2h(x)^2dxge cleft(int_0^1h(x)dxright)^4$Prove that $int_0^1f(x)^2dxgeq 4$$int_0^1f(x)cdot g(x)dx=int_0^1f(x)dxcdot int_0^1g(x)dx$Prove that:$f(f(x)) = x^2 implies int_0^1(f(x))^2dx geq frac313$how can we explain that $int_0^L1 + frac12(u'(x))^2dx - L = int_0^Lfrac12(u'(x))^2dx$?For a continuous function with $int_0^1 f(x)dx=1$, and $M=maxf(x)$, show that $1-frac12Mgeqint_0^1xf(x)dxgeqfrac12M$Let $f:mathbbRrightarrowmathbbR$ be a continuous function such that $int_x^1f(t)dtgeq(1-x)^2$. Prove that $f(1)=0$Prove that $int_0^1f(x)arctan x dx=fracπ8int_0^1f(x)dx$Prove that $f(x)=0$ for any $xin[0,1]$.
$begingroup$
If $f:[0,1]rightarrowmathbbR$ is a continuous function such that $2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$, prove that $int_0^1(f(x))^2dxgeqfrac43$.
However, using CBS I proved that $int_0^1(f(x))^2dxint_0^1x^2dxgeq(int_0^1(f(x))xdx)^2geqfrac14(int_0^1(f(x))^2dx)^2$ and so I obtain exactly the reverse of what I am asked to:$frac43geqint_0^1(f(x))^2dx$. Is there a mistake in the task or in my proof?
integration analysis inequality definite-integrals continuity
$endgroup$
add a comment |
$begingroup$
If $f:[0,1]rightarrowmathbbR$ is a continuous function such that $2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$, prove that $int_0^1(f(x))^2dxgeqfrac43$.
However, using CBS I proved that $int_0^1(f(x))^2dxint_0^1x^2dxgeq(int_0^1(f(x))xdx)^2geqfrac14(int_0^1(f(x))^2dx)^2$ and so I obtain exactly the reverse of what I am asked to:$frac43geqint_0^1(f(x))^2dx$. Is there a mistake in the task or in my proof?
integration analysis inequality definite-integrals continuity
$endgroup$
add a comment |
$begingroup$
If $f:[0,1]rightarrowmathbbR$ is a continuous function such that $2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$, prove that $int_0^1(f(x))^2dxgeqfrac43$.
However, using CBS I proved that $int_0^1(f(x))^2dxint_0^1x^2dxgeq(int_0^1(f(x))xdx)^2geqfrac14(int_0^1(f(x))^2dx)^2$ and so I obtain exactly the reverse of what I am asked to:$frac43geqint_0^1(f(x))^2dx$. Is there a mistake in the task or in my proof?
integration analysis inequality definite-integrals continuity
$endgroup$
If $f:[0,1]rightarrowmathbbR$ is a continuous function such that $2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$, prove that $int_0^1(f(x))^2dxgeqfrac43$.
However, using CBS I proved that $int_0^1(f(x))^2dxint_0^1x^2dxgeq(int_0^1(f(x))xdx)^2geqfrac14(int_0^1(f(x))^2dx)^2$ and so I obtain exactly the reverse of what I am asked to:$frac43geqint_0^1(f(x))^2dx$. Is there a mistake in the task or in my proof?
integration analysis inequality definite-integrals continuity
integration analysis inequality definite-integrals continuity
edited 2 days ago
Michael Rozenberg
107k1895200
107k1895200
asked Mar 7 at 8:42
Septimiu CristianSeptimiu Cristian
1
1
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes, the inequality $int_0^1(f(x))^2dxgeqfrac43$ should be reversed. Note that $f=0$ satisfies
$$2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$$
but $int_0^1(f(x))^2dxgeqfrac43$ does not hold.
On the other hand, by Cauchy-Schwarz (note that $int_0^1 2xf(x)dxgeq 0$)
$$left(int_0^1(f(x))^2dxright)^2leqleft(int_0^1 2xf(x)dxright)^2leq int_0^14x^2dxint_0^1(f(x))^2dx=frac43int_0^1(f(x))^2dx$$
which implies
$$int_0^1(f(x))^2dxleq frac43.$$
$endgroup$
add a comment |
$begingroup$
You need to write that the condition gives $intlimits_0^1xf(x)dxgeq0$.
Otherwise, your solution is not full.
Now, by C-S $$intlimits_0^1f(x)^2dxintlimits_0^1x^2dxgeqleft(intlimits_0^1xf(x)dxright)^2geqfrac14left(intlimits_0^1f(x)^2dxright)^2$$
and since $intlimits_0^1x^2dx=frac13$, we obtain:
$$intlimits_0^1f(x)^2dxleqfrac43.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3138628%2fif-2-int-01-xfxdx-geq-int-01fx2dx-prove-than-int-01%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, the inequality $int_0^1(f(x))^2dxgeqfrac43$ should be reversed. Note that $f=0$ satisfies
$$2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$$
but $int_0^1(f(x))^2dxgeqfrac43$ does not hold.
On the other hand, by Cauchy-Schwarz (note that $int_0^1 2xf(x)dxgeq 0$)
$$left(int_0^1(f(x))^2dxright)^2leqleft(int_0^1 2xf(x)dxright)^2leq int_0^14x^2dxint_0^1(f(x))^2dx=frac43int_0^1(f(x))^2dx$$
which implies
$$int_0^1(f(x))^2dxleq frac43.$$
$endgroup$
add a comment |
$begingroup$
Yes, the inequality $int_0^1(f(x))^2dxgeqfrac43$ should be reversed. Note that $f=0$ satisfies
$$2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$$
but $int_0^1(f(x))^2dxgeqfrac43$ does not hold.
On the other hand, by Cauchy-Schwarz (note that $int_0^1 2xf(x)dxgeq 0$)
$$left(int_0^1(f(x))^2dxright)^2leqleft(int_0^1 2xf(x)dxright)^2leq int_0^14x^2dxint_0^1(f(x))^2dx=frac43int_0^1(f(x))^2dx$$
which implies
$$int_0^1(f(x))^2dxleq frac43.$$
$endgroup$
add a comment |
$begingroup$
Yes, the inequality $int_0^1(f(x))^2dxgeqfrac43$ should be reversed. Note that $f=0$ satisfies
$$2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$$
but $int_0^1(f(x))^2dxgeqfrac43$ does not hold.
On the other hand, by Cauchy-Schwarz (note that $int_0^1 2xf(x)dxgeq 0$)
$$left(int_0^1(f(x))^2dxright)^2leqleft(int_0^1 2xf(x)dxright)^2leq int_0^14x^2dxint_0^1(f(x))^2dx=frac43int_0^1(f(x))^2dx$$
which implies
$$int_0^1(f(x))^2dxleq frac43.$$
$endgroup$
Yes, the inequality $int_0^1(f(x))^2dxgeqfrac43$ should be reversed. Note that $f=0$ satisfies
$$2int_0^1 xf(x)dxgeqint_0^1(f(x))^2dx$$
but $int_0^1(f(x))^2dxgeqfrac43$ does not hold.
On the other hand, by Cauchy-Schwarz (note that $int_0^1 2xf(x)dxgeq 0$)
$$left(int_0^1(f(x))^2dxright)^2leqleft(int_0^1 2xf(x)dxright)^2leq int_0^14x^2dxint_0^1(f(x))^2dx=frac43int_0^1(f(x))^2dx$$
which implies
$$int_0^1(f(x))^2dxleq frac43.$$
edited Mar 7 at 9:02
answered Mar 7 at 8:47
Robert ZRobert Z
100k1069140
100k1069140
add a comment |
add a comment |
$begingroup$
You need to write that the condition gives $intlimits_0^1xf(x)dxgeq0$.
Otherwise, your solution is not full.
Now, by C-S $$intlimits_0^1f(x)^2dxintlimits_0^1x^2dxgeqleft(intlimits_0^1xf(x)dxright)^2geqfrac14left(intlimits_0^1f(x)^2dxright)^2$$
and since $intlimits_0^1x^2dx=frac13$, we obtain:
$$intlimits_0^1f(x)^2dxleqfrac43.$$
$endgroup$
add a comment |
$begingroup$
You need to write that the condition gives $intlimits_0^1xf(x)dxgeq0$.
Otherwise, your solution is not full.
Now, by C-S $$intlimits_0^1f(x)^2dxintlimits_0^1x^2dxgeqleft(intlimits_0^1xf(x)dxright)^2geqfrac14left(intlimits_0^1f(x)^2dxright)^2$$
and since $intlimits_0^1x^2dx=frac13$, we obtain:
$$intlimits_0^1f(x)^2dxleqfrac43.$$
$endgroup$
add a comment |
$begingroup$
You need to write that the condition gives $intlimits_0^1xf(x)dxgeq0$.
Otherwise, your solution is not full.
Now, by C-S $$intlimits_0^1f(x)^2dxintlimits_0^1x^2dxgeqleft(intlimits_0^1xf(x)dxright)^2geqfrac14left(intlimits_0^1f(x)^2dxright)^2$$
and since $intlimits_0^1x^2dx=frac13$, we obtain:
$$intlimits_0^1f(x)^2dxleqfrac43.$$
$endgroup$
You need to write that the condition gives $intlimits_0^1xf(x)dxgeq0$.
Otherwise, your solution is not full.
Now, by C-S $$intlimits_0^1f(x)^2dxintlimits_0^1x^2dxgeqleft(intlimits_0^1xf(x)dxright)^2geqfrac14left(intlimits_0^1f(x)^2dxright)^2$$
and since $intlimits_0^1x^2dx=frac13$, we obtain:
$$intlimits_0^1f(x)^2dxleqfrac43.$$
edited 2 days ago
answered Mar 7 at 9:01
Michael RozenbergMichael Rozenberg
107k1895200
107k1895200
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3138628%2fif-2-int-01-xfxdx-geq-int-01fx2dx-prove-than-int-01%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown