Schur–Zassenhaus theorem Contents History Examples Proof References Navigation menu10.1007/978-1-4612-4176-813076232286236"Zur Erweiterungstheorie der endlichen Gruppen"10.1515/crll.1952.190.930051226049881010.1090/gsm/092242685510.1007/b9743320144081420410"Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen""Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen"Collected papers. Gesammelte Abhandlungen10.1007/978-3-642-41970-616439490091275

Theorems in group theory


theoremgroup theoryfinite groupnormal subgroupordercoprimequotient groupsemidirect productHall subgroupcomplementconjugateFeit-Thompson theoremcomposition seriesextension theoryZassenhaus19371958Issai Schur19041907Schur multiplierErnst WittSchreier conjecture1998cyclic groupelementsautomorphismstrivial groupKlein four-groupsymmetric groupindextheorem of LagrangeAbelianquaternion groupcentral extension





Theorem in group theory

The Schur–Zassenhaus theorem is a theorem in group theory which states that if Gdisplaystyle G is a finite group, and Ndisplaystyle N is a normal subgroup whose order is coprime to the order of the quotient group G/Ndisplaystyle G/N, then Gdisplaystyle G is a semidirect product (or split extension) of Ndisplaystyle N and G/Ndisplaystyle G/N. An alternative statement of the theorem is that any normal Hall subgroup Ndisplaystyle N of a finite group Gdisplaystyle G has a complement in Gdisplaystyle G. Moreover if either Ndisplaystyle N or G/Ndisplaystyle G/N is solvable then the Schur–Zassenhaus theorem also states that all complements of Ndisplaystyle N in G are conjugate. The assumption that either Ndisplaystyle N or G/Ndisplaystyle G/N is solvable can be dropped as it is always satisfied, but all known proofs of this require the use of the much harder Feit-Thompson theorem.


The Schur–Zassenhaus theorem at least partially answers the question: "In a composition series, how can we classify groups with a certain set of composition factors?" The other part, which is where the composition factors do not have coprime orders, is tackled in extension theory.




Contents





  • 1 History


  • 2 Examples


  • 3 Proof


  • 4 References




History


The Schur–Zassenhaus theorem was introduced by Zassenhaus (1937, 1958, Chapter IV, section 7). Theorem 25, which he credits to Issai Schur, proves the existence of a complement, and theorem 27 proves that all complements are conjugate under the assumption that Ndisplaystyle N or G/Ndisplaystyle G/N is solvable. It is not easy to find an explicit statement of the existence of a complement in Schur's published works, though the results of Schur (1904, 1907) on the Schur multiplier imply the existence of a complement in the special case when the normal subgroup is in the center. Zassenhaus pointed out that the Schur–Zassenhaus theorem for non-solvable groups would follow if all groups of odd order are solvable, which was later proved by Feit and Thompson. Ernst Witt showed that it would also follow from the Schreier conjecture (see Witt (1998, p.277) for Witt's unpublished 1937 note about this), but the Schreier conjecture has only been proved using the classification of finite simple groups, which is far harder than the Feit–Thompson theorem.



Examples


If we do not impose the coprime condition, the theorem is not true: consider for example the cyclic group C4displaystyle C_4 and its normal subgroup C2displaystyle C_2. Then if C4displaystyle C_4 were a semidirect product of C2displaystyle C_2 and C4/C2≅C2displaystyle C_4/C_2cong C_2 then C4displaystyle C_4 would have to contain two elements of order 2, but it only contains one. Another way to explain this impossibility of splitting C4displaystyle C_4 (i.e. expressing it as a semidirect product) is to observe that the automorphisms of C2displaystyle C_2 are the trivial group, so the only possible [semi]direct product of C2displaystyle C_2 with itself is a direct product (which gives rise to the Klein four-group, a group that is non-isomorphic with C4displaystyle C_4).


An example where the Schur–Zassenhaus theorem does apply is the symmetric group on 3 symbols, S3displaystyle S_3, which has a normal subgroup of order 3 (isomorphic with C3displaystyle C_3) which in turn has index 2 in S3displaystyle S_3 (in agreement with the theorem of Lagrange), so S3/C3≅C2displaystyle S_3/C_3cong C_2. Since 2 and 3 are relatively prime, the Schur–Zassenhaus theorem applies and S3≅C3⋊C2displaystyle S_3cong C_3rtimes C_2. Note that the automorphism group of C3displaystyle C_3 is C2displaystyle C_2 and the automorphism of C3displaystyle C_3 used in the semidirect product that gives rise to S3displaystyle S_3 is the non-trivial automorphism that permutes the two non-identity elements of C3displaystyle C_3. Furthermore, the three subgroups of order 2 in S3displaystyle S_3 (any of which can serve as a complement to C3displaystyle C_3 in S3displaystyle S_3) are conjugate to each other.


The non-triviality of the (additional) conjugacy conclusion can be illustrated with the Klein four-group Vdisplaystyle V as the non-example. Any of the three proper subgroups of Vdisplaystyle V (all of which have order 2) is normal in Vdisplaystyle V; fixing one of these subgroups, any of the other two remaining (proper) subgroups complements it in Vdisplaystyle V, but none of these three subgroups of Vdisplaystyle V is a conjugate of any other one, because Vdisplaystyle V is Abelian.


The quaternion group has normal subgroups of order 4 and 2 but is not a [semi]direct product. Schur's papers at the beginning of the 20th century introduced the notion of central extension to address examples such as such C4displaystyle C_4 and the quaternions.



Proof


The existence of a complement to a normal Hall subgroup H of a finite group G can be proved in the following steps:


  1. By induction on the order of G, we can assume that it is true for any smaller group.

  2. If H is abelian, then the existence of a complement follows from the fact that the cohomology group H2(G/H,H) vanishes (as H and G/H have coprime orders) and the fact that all complements are conjugate follows from the vanishing of H1(G/H,H).

  3. If H is solvable, it has a nontrivial abelian subgroup A that is characteristic in H and therefore normal in G. Applying the Schur–Zassenhaus theorem to G/A reduces the proof to the case when H=A is abelian which has been done in the previous step.

  4. If the normalizer N=NG(P) of every p-Sylow subgroup P of H is equal to G, then H is nilpotent, and in particular solvable, so the theorem follows by the previous step.

  5. If the normalizer N=NG(P) of some p-Sylow subgroup P of H is smaller than G, then by induction the Schur–Zassenhaus theorem holds for N, and a complement of NH in N is a complement for H in G because G=NH.


References



  • Rotman, Joseph J. (1995). An Introduction to the Theory of Groups. Graduate Texts in Mathematics. 148 (Fourth ed.). New York: Springer–Verlag. doi:10.1007/978-1-4612-4176-8. ISBN 978-0-387-94285-8. MR 1307623..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  • Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (Third ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-0-471-43334-7. MR 2286236.


  • Gaschütz, Wolfgang (1952), "Zur Erweiterungstheorie der endlichen Gruppen", J. Reine Angew. Math., 190: 93–107, doi:10.1515/crll.1952.190.93, MR 0051226


  • Rose, John S. (1978). A Course on Group Theory. Cambridge-New York-Melbourne: Cambridge University Press. ISBN 0-521-21409-2. MR 0498810.


  • Isaacs, I. Martin (2008). Finite Group Theory. Graduate Studies in Mathematics. 92. Providence, RI: American Mathematical Society. doi:10.1090/gsm/092. ISBN 978-0-8218-4344-4. MR 2426855.


  • Kurzweil, Hans; Stellmacher, Bernd (2004). The Theory of Finite Groups: An Introduction. Universitext. New York: Springer-Verlag. doi:10.1007/b97433. ISBN 0-387-40510-0. MR 2014408.


  • Humphreys, James E. (1996). A Course in Group Theory. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press. ISBN 0-19-853459-0. MR 1420410.


  • Schur, Issai (1904). "Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen". Journal für die reine und angewandte Mathematik. 127: 20–50.


  • Schur, Issai (1907). "Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen". Journal für die reine und angewandte Mathematik. 132: 85–137.


  • Witt, Ernst (1998), Kersten, Ina, ed., Collected papers. Gesammelte Abhandlungen, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-41970-6, ISBN 978-3-540-57061-5, MR 1643949


  • Zassenhaus, Hans (1937). Lehrbuch der Gruppentheorie. Hamburger Mathematische Einzelschriften. 21. Leipzig and Berlin: Teubner.. English translation:Zassenhaus, Hans J. (1958) [1949], The theory of groups. (2nd ed.), New York: Chelsea Publishing Company, MR 0091275


Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye