Proving $(A cup B) setminus (A cap B) = (A setminus B) cup (B setminus A)$ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Show that $A setminus ( B setminus C ) equiv ( A setminus B) cup ( A cap C )$Prove the following $A setminus (Bsetminus C) = (Asetminus B)cap (A cup C)$de morgan law $Asetminus (B cap C) = (Asetminus B) cup (Asetminus C) $Show that $(A_1times B_1)setminus(A_2times B_2)=[(A_1cap A_2)times (B_1setminus B_2)]cup [(A_1setminus A_2)times B_1]$Proving equalities with sets: $A cap (B cup C) = (A cap B) cup (A cap C)$ and $X setminus (A cap B) = (X setminus A) cup (X setminus B)$Proof Verification - Set Theory Inclusionshow that $X setminus A subset B iff A cup B =X$Show that $A setminus (B setminus C)$ is equivalent to $(A setminus B) cup (A cap C)$?Set theory: Prove that $C subseteq A Delta B iff C subseteq A cup B wedge A cap B cap C = emptyset$How to show equality $A = (Asetminus B) cup (Asetminus C) cup (A cap B cap C)$
Do warforged have souls?
What is the padding with red substance inside of steak packaging?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
Didn't get enough time to take a Coding Test - what to do now?
Variable with quotation marks "$()"
How to support a colleague who finds meetings extremely tiring?
How to read αἱμύλιος or when to aspirate
Store Dynamic-accessible hidden metadata in a cell
Did the new image of black hole confirm the general theory of relativity?
Word for: a synonym with a positive connotation?
How to determine omitted units in a publication
how can a perfect fourth interval be considered either consonant or dissonant?
How to handle characters who are more educated than the author?
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
Match Roman Numerals
How do you keep chess fun when your opponent constantly beats you?
Why can't devices on different VLANs, but on the same subnet, communicate?
"is" operation returns false even though two objects have same id
Button changing its text & action. Good or terrible?
Can I visit the Trinity College (Cambridge) library and see some of their rare books
Is an up-to-date browser secure on an out-of-date OS?
Intergalactic human space ship encounters another ship, character gets shunted off beyond known universe, reality starts collapsing
How to make Illustrator type tool selection automatically adapt with text length
Deal with toxic manager when you can't quit
Proving $(A cup B) setminus (A cap B) = (A setminus B) cup (B setminus A)$
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Show that $A setminus ( B setminus C ) equiv ( A setminus B) cup ( A cap C )$Prove the following $A setminus (Bsetminus C) = (Asetminus B)cap (A cup C)$de morgan law $Asetminus (B cap C) = (Asetminus B) cup (Asetminus C) $Show that $(A_1times B_1)setminus(A_2times B_2)=[(A_1cap A_2)times (B_1setminus B_2)]cup [(A_1setminus A_2)times B_1]$Proving equalities with sets: $A cap (B cup C) = (A cap B) cup (A cap C)$ and $X setminus (A cap B) = (X setminus A) cup (X setminus B)$Proof Verification - Set Theory Inclusionshow that $X setminus A subset B iff A cup B =X$Show that $A setminus (B setminus C)$ is equivalent to $(A setminus B) cup (A cap C)$?Set theory: Prove that $C subseteq A Delta B iff C subseteq A cup B wedge A cap B cap C = emptyset$How to show equality $A = (Asetminus B) cup (Asetminus C) cup (A cap B cap C)$
$begingroup$
In this exercise sheet (German) there is the following problem: Prove that $(A cup B) setminus (A cap B) = (A setminus B) cup (B setminus A)$. There is a solution shown below (und means and, oder means or).
I don't understand how the transition from
$xin (Acup B) wedge xnotin(Acap B)$ (item 1 above)
to
$(x in A wedge x notin B) vee (x in B wedge x notin A)$ (item 2)
is made.
The only thing that comes to mind is De Morgan's law. Then
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg (x notin (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x in (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg(x in A wedge x in B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff (x notin A vee xin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff x notin A vee xin B vee x notin A vee x notin B$
The problem is that I have two $xnotin A$, whereas in the solution from the exercise there is one $xin A$ and one $xnotin A$.
Where exactly did I make a mistake?
proof-verification elementary-set-theory logic
$endgroup$
add a comment |
$begingroup$
In this exercise sheet (German) there is the following problem: Prove that $(A cup B) setminus (A cap B) = (A setminus B) cup (B setminus A)$. There is a solution shown below (und means and, oder means or).
I don't understand how the transition from
$xin (Acup B) wedge xnotin(Acap B)$ (item 1 above)
to
$(x in A wedge x notin B) vee (x in B wedge x notin A)$ (item 2)
is made.
The only thing that comes to mind is De Morgan's law. Then
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg (x notin (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x in (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg(x in A wedge x in B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff (x notin A vee xin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff x notin A vee xin B vee x notin A vee x notin B$
The problem is that I have two $xnotin A$, whereas in the solution from the exercise there is one $xin A$ and one $xnotin A$.
Where exactly did I make a mistake?
proof-verification elementary-set-theory logic
$endgroup$
add a comment |
$begingroup$
In this exercise sheet (German) there is the following problem: Prove that $(A cup B) setminus (A cap B) = (A setminus B) cup (B setminus A)$. There is a solution shown below (und means and, oder means or).
I don't understand how the transition from
$xin (Acup B) wedge xnotin(Acap B)$ (item 1 above)
to
$(x in A wedge x notin B) vee (x in B wedge x notin A)$ (item 2)
is made.
The only thing that comes to mind is De Morgan's law. Then
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg (x notin (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x in (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg(x in A wedge x in B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff (x notin A vee xin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff x notin A vee xin B vee x notin A vee x notin B$
The problem is that I have two $xnotin A$, whereas in the solution from the exercise there is one $xin A$ and one $xnotin A$.
Where exactly did I make a mistake?
proof-verification elementary-set-theory logic
$endgroup$
In this exercise sheet (German) there is the following problem: Prove that $(A cup B) setminus (A cap B) = (A setminus B) cup (B setminus A)$. There is a solution shown below (und means and, oder means or).
I don't understand how the transition from
$xin (Acup B) wedge xnotin(Acap B)$ (item 1 above)
to
$(x in A wedge x notin B) vee (x in B wedge x notin A)$ (item 2)
is made.
The only thing that comes to mind is De Morgan's law. Then
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg (x notin (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x in (A cap B))$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee neg(x in A wedge x in B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff neg (x in A wedge xnotin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff (x notin A vee xin B) vee (x notin A vee x notin B)$
$xin (Acup B) wedge xnotin(Acap B) iff x notin A vee xin B vee x notin A vee x notin B$
The problem is that I have two $xnotin A$, whereas in the solution from the exercise there is one $xin A$ and one $xnotin A$.
Where exactly did I make a mistake?
proof-verification elementary-set-theory logic
proof-verification elementary-set-theory logic
edited Mar 24 at 17:07
Franz Drollig
asked Mar 24 at 17:02
Franz DrolligFranz Drollig
1013
1013
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
This would be one way of proving it:
$$xin (Acup B) wedge xnotin(Acap B)$$
$$iff (xin Alor xin B)land neg(xin Aland xin B)$$
$$iff(xin Alor xin B)land(xnotin Alor xnotin B)$$
$$iff[(xin Alor xin B)land(xnotin A)]lor[(xin Alor xin B)land(xnotin B)]$$
$$iff(xin Aland xnotin A)lor(xin Bland xnotin A)lor (xin Aland xnotin B)lor(xin Bland xnotin B)$$
$$iff (xin Bland xnotin A)lor (xin Aland xnotin B)$$
And, to continue:
$$iff (xin Bsetminus A)lor (xin Asetminus B)$$
$$iff xin (Bsetminus A)cup(Asetminus B)$$
$endgroup$
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
1
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
add a comment |
$begingroup$
The statement $xin (Acup B)backslash (Acap B)$ is equivalent to the statement $xin (Abackslash B)cup (Bbackslash A)$ because both are equivalent to $(xin A)notequiv(xin B)$.
Or if you prefer a proof by diagrams, both statements imply $x$ is in one of two intersecting circles that denote $A,,B$, but not in their intersection. (The part of one circle that doesn't intersect the other denotes $Abackslash B$; with the other circle, we get $Bbackslash A$.)
$endgroup$
add a comment |
$begingroup$
Once you know $x in A cup B$ and $x notin A cap B$, you have two cases: $x in A$ and $x in B$, from the union. If $x in A$ we know $x notin B$ (or else $xin A cap B$, which is not the case) and if $x in B$ in the same way : $x notin A$. Hence the step from (1) to (2) in your proof. No need for heavy formula manipulation, just simple reasoning..
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160783%2fproving-a-cup-b-setminus-a-cap-b-a-setminus-b-cup-b-setminus-a%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This would be one way of proving it:
$$xin (Acup B) wedge xnotin(Acap B)$$
$$iff (xin Alor xin B)land neg(xin Aland xin B)$$
$$iff(xin Alor xin B)land(xnotin Alor xnotin B)$$
$$iff[(xin Alor xin B)land(xnotin A)]lor[(xin Alor xin B)land(xnotin B)]$$
$$iff(xin Aland xnotin A)lor(xin Bland xnotin A)lor (xin Aland xnotin B)lor(xin Bland xnotin B)$$
$$iff (xin Bland xnotin A)lor (xin Aland xnotin B)$$
And, to continue:
$$iff (xin Bsetminus A)lor (xin Asetminus B)$$
$$iff xin (Bsetminus A)cup(Asetminus B)$$
$endgroup$
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
1
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
add a comment |
$begingroup$
This would be one way of proving it:
$$xin (Acup B) wedge xnotin(Acap B)$$
$$iff (xin Alor xin B)land neg(xin Aland xin B)$$
$$iff(xin Alor xin B)land(xnotin Alor xnotin B)$$
$$iff[(xin Alor xin B)land(xnotin A)]lor[(xin Alor xin B)land(xnotin B)]$$
$$iff(xin Aland xnotin A)lor(xin Bland xnotin A)lor (xin Aland xnotin B)lor(xin Bland xnotin B)$$
$$iff (xin Bland xnotin A)lor (xin Aland xnotin B)$$
And, to continue:
$$iff (xin Bsetminus A)lor (xin Asetminus B)$$
$$iff xin (Bsetminus A)cup(Asetminus B)$$
$endgroup$
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
1
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
add a comment |
$begingroup$
This would be one way of proving it:
$$xin (Acup B) wedge xnotin(Acap B)$$
$$iff (xin Alor xin B)land neg(xin Aland xin B)$$
$$iff(xin Alor xin B)land(xnotin Alor xnotin B)$$
$$iff[(xin Alor xin B)land(xnotin A)]lor[(xin Alor xin B)land(xnotin B)]$$
$$iff(xin Aland xnotin A)lor(xin Bland xnotin A)lor (xin Aland xnotin B)lor(xin Bland xnotin B)$$
$$iff (xin Bland xnotin A)lor (xin Aland xnotin B)$$
And, to continue:
$$iff (xin Bsetminus A)lor (xin Asetminus B)$$
$$iff xin (Bsetminus A)cup(Asetminus B)$$
$endgroup$
This would be one way of proving it:
$$xin (Acup B) wedge xnotin(Acap B)$$
$$iff (xin Alor xin B)land neg(xin Aland xin B)$$
$$iff(xin Alor xin B)land(xnotin Alor xnotin B)$$
$$iff[(xin Alor xin B)land(xnotin A)]lor[(xin Alor xin B)land(xnotin B)]$$
$$iff(xin Aland xnotin A)lor(xin Bland xnotin A)lor (xin Aland xnotin B)lor(xin Bland xnotin B)$$
$$iff (xin Bland xnotin A)lor (xin Aland xnotin B)$$
And, to continue:
$$iff (xin Bsetminus A)lor (xin Asetminus B)$$
$$iff xin (Bsetminus A)cup(Asetminus B)$$
answered Mar 24 at 17:10
st.mathst.math
1,151115
1,151115
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
1
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
add a comment |
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
1
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
$begingroup$
What rule/law did you use to go from $(x in A vee x in B)$ to $[(x in A vee x in B) wedge (x notin A)]$?
$endgroup$
– Franz Drollig
Mar 24 at 17:13
1
1
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
$begingroup$
@FranzDrollig Distributivity; in this case: $(xlor y)land (zlor w)iff [(xlor y)land z]lor[(xlor y)land w]$. This is simliar to distributivity for real numbers, $(a+b)(c+d)=(a+b)c+(a+b)d$.
$endgroup$
– st.math
Mar 24 at 17:16
add a comment |
$begingroup$
The statement $xin (Acup B)backslash (Acap B)$ is equivalent to the statement $xin (Abackslash B)cup (Bbackslash A)$ because both are equivalent to $(xin A)notequiv(xin B)$.
Or if you prefer a proof by diagrams, both statements imply $x$ is in one of two intersecting circles that denote $A,,B$, but not in their intersection. (The part of one circle that doesn't intersect the other denotes $Abackslash B$; with the other circle, we get $Bbackslash A$.)
$endgroup$
add a comment |
$begingroup$
The statement $xin (Acup B)backslash (Acap B)$ is equivalent to the statement $xin (Abackslash B)cup (Bbackslash A)$ because both are equivalent to $(xin A)notequiv(xin B)$.
Or if you prefer a proof by diagrams, both statements imply $x$ is in one of two intersecting circles that denote $A,,B$, but not in their intersection. (The part of one circle that doesn't intersect the other denotes $Abackslash B$; with the other circle, we get $Bbackslash A$.)
$endgroup$
add a comment |
$begingroup$
The statement $xin (Acup B)backslash (Acap B)$ is equivalent to the statement $xin (Abackslash B)cup (Bbackslash A)$ because both are equivalent to $(xin A)notequiv(xin B)$.
Or if you prefer a proof by diagrams, both statements imply $x$ is in one of two intersecting circles that denote $A,,B$, but not in their intersection. (The part of one circle that doesn't intersect the other denotes $Abackslash B$; with the other circle, we get $Bbackslash A$.)
$endgroup$
The statement $xin (Acup B)backslash (Acap B)$ is equivalent to the statement $xin (Abackslash B)cup (Bbackslash A)$ because both are equivalent to $(xin A)notequiv(xin B)$.
Or if you prefer a proof by diagrams, both statements imply $x$ is in one of two intersecting circles that denote $A,,B$, but not in their intersection. (The part of one circle that doesn't intersect the other denotes $Abackslash B$; with the other circle, we get $Bbackslash A$.)
answered Mar 24 at 17:15
J.G.J.G.
33.3k23252
33.3k23252
add a comment |
add a comment |
$begingroup$
Once you know $x in A cup B$ and $x notin A cap B$, you have two cases: $x in A$ and $x in B$, from the union. If $x in A$ we know $x notin B$ (or else $xin A cap B$, which is not the case) and if $x in B$ in the same way : $x notin A$. Hence the step from (1) to (2) in your proof. No need for heavy formula manipulation, just simple reasoning..
$endgroup$
add a comment |
$begingroup$
Once you know $x in A cup B$ and $x notin A cap B$, you have two cases: $x in A$ and $x in B$, from the union. If $x in A$ we know $x notin B$ (or else $xin A cap B$, which is not the case) and if $x in B$ in the same way : $x notin A$. Hence the step from (1) to (2) in your proof. No need for heavy formula manipulation, just simple reasoning..
$endgroup$
add a comment |
$begingroup$
Once you know $x in A cup B$ and $x notin A cap B$, you have two cases: $x in A$ and $x in B$, from the union. If $x in A$ we know $x notin B$ (or else $xin A cap B$, which is not the case) and if $x in B$ in the same way : $x notin A$. Hence the step from (1) to (2) in your proof. No need for heavy formula manipulation, just simple reasoning..
$endgroup$
Once you know $x in A cup B$ and $x notin A cap B$, you have two cases: $x in A$ and $x in B$, from the union. If $x in A$ we know $x notin B$ (or else $xin A cap B$, which is not the case) and if $x in B$ in the same way : $x notin A$. Hence the step from (1) to (2) in your proof. No need for heavy formula manipulation, just simple reasoning..
answered Mar 25 at 9:38
Henno BrandsmaHenno Brandsma
116k349127
116k349127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160783%2fproving-a-cup-b-setminus-a-cap-b-a-setminus-b-cup-b-setminus-a%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown